[1] 谷德振, 王思敬. 论岩体工程地质力学的基本问题[C]//全国首届工程地质学术会议. 苏州: 中国地质学会, 1979: 191-198. GU Dezheng, WANG Sijing. Discussion on the basic problems of rock mass engineering geomechanics [C]//Proceedings of the 1st national academic conference on engineering geology. Suzhou: Geological Society of China, 1979: 191-198. [2] 孙玉科. 岩体结构力学: 岩体工程地质力学的新发展[J]. 工程地质学报, 1997, 5(4): 292-294, 291. SUN Yuke. Rockmass structural mechanism: a new advance in rock engineering geological mechanicas[J]. Journal of Engineering Geology, 1997, 5(4): 292-294, 291. [3] 罗国煜, 刘松玉, 杨卫东. 区域稳定性优势面分析理论与方法[J]. 岩土工程学报, 1992, 14(6):10-18. LUO Guoyu, LIU Songyu, YANG Weidong. Analysis of regional stability by theory of preferred plane[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(6):10-18. [4] 刘新荣, 许彬, 周小涵, 等. 软硬互层岩体结构面宏细观剪切力学特性[J]. 煤炭学报, 2021, 46(9): 2895-2909. LIU Xinrong, XU Bin, ZHOU Xiaohan, et al. Investigation on the macro-meso shear mechanical properties of soft-hard interbedded rock discontinuity[J]. Journal of China Coal Society, 2021, 46(9): 2895-2909. [5] 梁玉飞, 裴向军, 崔圣华, 等. 基于地面三维激光点云的滑坡破坏边界岩体结构特征分析[J]. 岩石力学与工程学报, 2021, 40(6): 1209-1225. LIANG Yufei, PEI Xiangjun, CUI Shenghua, et al. Analysis of rock mass structure characteristics of landslide boundaries based on ground 3D laser point cloud[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1209-1225. [6] 张永军, 张祖勋, 龚健雅. 天空地多源遥感数据的广义摄影测量学[J]. 测绘学报, 2021, 50(1): 1-11. DOI: 10.11947/j.AGCS.2021.20200245. ZHANG Yongjun, ZHANG Zuxun, GONG Jianya. Generalized photogrammetry of spaceborne, airborne and terrestrial multi-source remote sensing datasets[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(1): 1-11. DOI: 10.11947/j.AGCS.2021.20200245. [7] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10): 1717-1733. DOI: 10.11947/j.AGCS.2017.20170350. ZHU Jianjun, LI Zhiwei, HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1717-1733. DOI: 10.11947/j.AGCS.2017.20170350. [8] 陈晓勇, 何海清, 周俊超, 等. 低空摄影测量立体影像匹配的现状与展望[J]. 测绘学报, 2019, 48(12): 1595-1603. DOI: 10.11947/j.AGCS.2019.20190466. CHEN Xiaoyong, HE Haiqing, ZHOU Junchao, et al. Progress and future of image matching in low-altitude photogrammetry[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1595-1603. DOI: 10.11947/j.AGCS.2019.20190466. [9] YAN Lei, ZHANG Ruihua, SUN Yanbiao. A preliminary study on the theory of polar coordinates digital photogrammetry and the coordinate system of spatial information[J]. Journal of Geodesy and Geoinformation Science, 2018(1): 61-79. [10] WU Faquan, WU Jie, BAO Han, et al. Advances in statistical mechanics of rock masses and its engineering applications[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(1): 22-45. [11] 李术才, 刘洪亮, 李利平, 等. 基于数码图像的掌子面岩体结构量化表征方法及工程应用[J]. 岩石力学与工程学报, 2017, 36(1): 1-9. LI Shucai, LIU Hongliang, LI Liping, et al. A quantitative method for rock structure at working faces of tunnels based on digital images and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(1): 1-9. [12] 葛云峰, 夏丁, 唐辉明, 等. 基于三维激光扫描技术的岩体结构面智能识别与信息提取[J]. 岩石力学与工程学报, 2017, 36(12): 3050-3061. GE Yunfeng, XIA Ding, TANG Huiming, et al. Intelligent identification and extraction of geometric properties of rock discontinuities based on terrestrial laser scanning[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 3050-3061. [13] STURZENEGGER M, STEAD D. Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts[J]. Engineering Geology, 2009, 106(3/4): 163-182. [14] MENEGONI N, GIORDAN D, PEROTTI C, et al. Detection and geometric characterization of rock mass discontinuities using a 3D high-resolution digital outcrop model generated from RPAS imagery-Ormea rock slope, Italy[J]. Engineering Geology, 2019, 252: 145-163. [15] 张永军, 万一, 史文中, 等. 多源卫星影像的摄影测量遥感智能处理技术框架与初步实践[J]. 测绘学报, 2021, 50(8): 1068-1083. DOI: 10.11947/j.AGCS.2021.20210079. ZHANG Yongjun, WAN Yi, SHI Wenzhong, et al. Technical framework and preliminary practices of photogrammetric remote sensing intelligent processing of multi-source satellite images[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1068-1083. DOI: 10.11947/j.AGCS.2021.20210079. [16] 龚健雅, 季顺平. 摄影测量与深度学习[J]. 测绘学报, 2018, 47(6): 693-704. DOI: 10.11947/j.AGCS.2018.20170640. GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6): 693-704. DOI: 10.11947/j.AGCS.2018.20170640. [17] 张勤, 赵超英, 陈雪蓉. 多源遥感地质灾害早期识别技术进展与发展趋势[J]. 测绘学报,2022,51(6):885-896. DOI: 10.11947/j.AGCS.2022.20220132. ZHANG Qin, ZHAO Chaoying, CHEN Xuerong. Technical progress and development trend of geological hazards early identification with multi-source remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 885-896. [18] HYMAN J D, DENTZ M, HAGBERG A, et al. Linking structural and transport properties in three-dimensional fracture networks[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(2): 1185-1204. [19] XU Wentao, ZHANG Yangsong, LI Xiaozhao, et al. Extraction and statistics of discontinuity orientation and trace length from typical fractured rock mass: a case study of the Xinchang underground research laboratory site, China[J]. Engineering Geology, 2020, 269: 105553. [20] 李晓昭, 周扬一, 汪志涛, 等. 测量统计范围大小对结构面迹长估计的影响[J]. 岩石力学与工程学报, 2011, 30(10): 2049-2056. LI Xiaozhao, ZHOU Yangyi, WANG Zhitao, et al. Effects of measurement range on estimation of trace length of discontinuities[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10): 2049-2056. [21] GIGLI G, CASAGLI N. Semi-automatic extraction of rock mass structural data from high resolution LiDAR point clouds[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(2): 187-198. [22] LI Xiaojun, CHEN Ziyang, CHEN Jianqin, et al. Automatic characterization of rock mass discontinuities using 3D point clouds[J]. Engineering Geology, 2019, 259: 105131. [23] 张祖勋, 杨生春, 张剑清, 等. 多基线-数字近景摄影测量[J]. 地理空间信息, 2007, 5(1): 1-4. ZHANG Zuxun, YANG Shengchun, ZHANG Jianqing, et al. Multi-baseline digital close-range photogrammetry[J]. Geospatial Information, 2007, 5(1): 1-4. [24] 姜三, 江万寿. Delaunay三角网约束下的影像稳健匹配方法[J]. 测绘学报, 2020, 49(3): 322-333. DOI: 10.11947/j.AGCS.2020.20190089. JIANG San, JIANG Wanshou. Robust image matching constrained by Delaunay triangulation[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3): 322-333. DOI: 10.11947/j.AGCS.2020.20190089. [25] SHANG Yang, SUN Xiaoliang, ZHANG Yueqiang, et al. Research on 3D target pose tracking and modeling[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 60-69. [26] 赵红蕊, 陆胜寒. 基于特征尺度分布与对极几何约束的高清影像快速密集匹配方法[J]. 测绘学报, 2018, 47(6): 790-798. DOI: 10.11947/j.AGCS.2018.20170630. ZHAO Hongrui, LU Shenghan. Dense high-definition image matching strategy based on scale distribution of feature and geometric constraint[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6): 790-798. DOI: 10.11947/j.AGCS.2018.20170630. [27] YANG M D, CHAO C F, HUANG K S, et al. Image-based 3D scene reconstruction and exploration in augmented reality[J]. Automation in Construction, 2013, 33: 48-60. [28] MAULDON M, DUNNE W M, ROHRBAUGH M B J. Circular scanlines and circular windows: new tools for characterizing the geometry of fracture traces[J]. Journal of Structural Geology, 2001, 23(2/3): 247-258. [29] CHEN Liang, WANG Ju, ZONG Zihua, et al. A new rock mass classification system QHLW for high-level radioactive waste disposal[J]. Engineering Geology, 2015, 190:33-51. [30] WANG Ju, CHEN Liang, SU Rui, et al. The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: planning, site selection, site characterization and in situ tests[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(3): 411-435. [31] XU Wentao, ZHANG Yangsong, LI Xiaozhao, et al. Comprehensive identification of statistical homogeneity of fractured rock masses for a candidate HLW repository site, China[J]. Engineering Geology, 2021, 293: 106279. [32] LÜ Jingguo, YANG Xingbin, ZHANG Danlu, et al. High-resolution remote sensing image semi-global matching method considering geometric constraints of connection points and image texture information[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4): 97-112. [33] GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Journal of Geodesy and Geoinformation Science, 2018(1): 1-15. [34] 许强, 朱星, 李为乐, 等. “天-空-地”协同滑坡监测技术进展[J]. 测绘学报,2022,51(7):1416-1436. DOI: 10.11947/j.AGCS.2022.20220320. XU Qiang, ZHU Xing, LI Weile, et al. Technical progress of space-air-ground collaborative monitoring of landslide[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1416-1436. DOI: 10.11947/j.AGCS.2022.20220320. |