[1] FAN Xuanmei, SCARINGI G, KORUP O, et al. Earthquake-induced chains of geologic hazards: patterns, mechanisms, and impacts[J]. Reviews of Geophysics, 2019, 57(2): 421-503. [2] 许冲, 徐锡伟, 吴熙彦, 等. 2008年汶川地震滑坡详细编目及其空间分布规律分析[J]. 工程地质学报, 2013, 21(1): 25-44. XU Chong, XU Xiwei, WU Xiyan, et al. Detailed catalog of landslides triggered by the 2008 Wenchuan earthquake and statistical analyses of their spatial distribution[J]. Journal of Engineering Geology, 2013, 21(1): 25-44. [3] GUZZETTI F, REICHENBACH P, ARDIZZONE F, et al. Estimating the quality of landslide susceptibility models[J]. Geomorphology, 2006,81(1/2):166-184. [4] 杜萍, 刘涛, 李鼎凯, 等. 应急场景快速制图及地图信息传输[J]. 测绘学报, 2019, 48(6):747-755.DOI: 10.11947/j.AGCS.2019.20180414. DU Ping, LIU Tao, LI Dingkai, et al. Rapid mapping of emergency scenario and cartographic information transmission[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(6):747-755.DOI: 10.11947/j.AGCS.2019.20180414. [5] JIBSON R, HARP E, MICHAEL J. A method for producing digital probabilistic seismic landslide hazard maps[J]. Engineering Geology, 2000, 58(3): 271-289. [6] YIGIT A. Prediction of amount of earthquake-induced slope displacement by using Newmark method[J]. Engineering Geology, 2020, 264: 105385. [7] 王涛, 吴树仁, 石菊松, 等. 历史强震对渭河中游群发大型滑坡的诱发效应反演[J]. 地球学报, 2015,36(3): 353-361. WANG Tao, WU Shuren, SHI Jusong, et al. Inversion of the inducing effects of historical strong earthquakes on large-scale landslides around the middle reaches of the Weihe River[J]. Acta Geoscientia Sinica, 2015,36(3): 353-361. [8] ZHANG Yongshuang, YANG Zhihua, GUO Changbao, et al. Predicting landslide scenes under potential earthquake scenarios in the Xianshuihe fault zone, Southwest China[J]. Journal of Mountain Science, 2017, 14(7): 1262-1278. [9] 陈晓利, 袁仁茂, 庾露. Newmark方法在芦山地震诱发滑坡分布预测研究中的应用[J]. 地震地质, 2013, 35(3):661-670. CHEN Xiaoli, YUAN Renmao, YU Lu. Applying the Newmark's model to the assessment of earthquake-triggered landslides during the Lushan earthquake[J]. Seismology and Geology, 2013, 35(3):661-670. [10] DREYFUS D, RATHJE E, JIBSON R. The influence of different simplified sliding-block models and input parameters on regional predictions of seismic landslides triggered by the Northridge earthquake[J]. Engineering Geology, 2013, 163: 41-54. [11] JIN K P, YAO L K, CHENG Q G, et al. Seismic landslides hazard zoning based on the modified Newmark model: a case study from the Lushan earthquake, China[J].Natural Hazards, 2019, 99(1): 493-509. [12] 刘甲美, 王涛, 石菊松, 等. 基于不同位移预测模型的地震滑坡危险性评估研究——以天水地区为例[J]. 地质力学学报, 2018, 24(1):87-95. LIU Jiamei, WANG Tao, SHI Jusong, et al. The influence of different Newmark displacement models on seismic landslide hazard assessment: a case study of Tianshui area, China[J]. Journal of Geomechanics, 2018, 24(1):87-95. [13] SHINODA M, MIYATA Y, KUROKAWA U, et al. Regional landslide susceptibility following the 2016 Kumamoto earthquake using back-calculated geomaterial strength parameters[J].Landslides, 2019, 16(8): 1497-1516. [14] TOWNSEND K F, GALLEN S F, CLARK M K. Quantifying near-surface rock strength on a regional scale from hillslope stability models[J]. Journal of Geophysical Research: Earth Surface, 2020, 125(7):JF005665. [15] 李鑫, 迟明杰, 李小军. 基于简化纽马克位移模型的地震滑坡岩土体强度参数研究[J]. 地震学报, 2018, 40(6): 820-830, 832. LI Xin, CHI Mingjie, LI Xiaojun. Rock-soil strength parameters of earthquake-triggered landslides based on simplified Newmark displacement model[J]. Acta Seismologica Sinica, 2018, 40(6): 820-830, 832. [16] XIAO Te, LI Dianqing, CAO Zijun, et al. CPT-based probabilistic characterization of three-dimensional spatial variability using MLE[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(5):4018023. [17] QI X H, LI D Q. Effect of spatial variability of shear strength parameters on critical slip surfaces of slopes[J]. Engineering Geology, 2018, 239: 41-49. [18] LI D Q, QI X H, PHOON K, et al. Effect of spatially variable shear strength parameters with linearly increasing mean trend on reliability of infinite slopes[J]. Structural Safety, 2014, 49: 45-55. [19] LI D Q, WANG M X, DU W Q.Influence of spatial variability of soil strength parameters on probabilistic seismic slope displacement hazard analysis[J]. Engineering Geology, 2020, 276: 105744. [20] GALLEN S F, CLARK M K, GODT J W. Coseismic landslides reveal near-surface rock strength in a high-relief, tectonically active setting[J]. Geology, 2015, 43(1): 11-14. [21] 朱庆, 曾浩炜, 丁雨淋, 等. 重大滑坡隐患分析方法综述[J]. 测绘学报, 2019,48(12): 1551-1561.DOI: 10.11947/j.AGCS.2019.20190452. ZHU Qing, ZENG Haowei, DING Yulin, et al. A review of major potential landslide hazards analysis[J]. Acta Geodaetica et Cartographica Sinica, 2019,48(12): 1551-1561.DOI: 10.11947/j.AGCS.2019.20190452. [22] 李文彬, 范宣梅, 黄发明, 等. 不同环境因子联接和预测模型的滑坡易发性建模不确定性[J]. 地球科学, 2021(10): 3777-3795. LI Wenbin, FAN Xuanmei, HUANG Faming, et al. Uncertainties of landslide susceptibility modeling under different environmental factor connections and prediction models[J]. Earth Science, 2021(10): 3777-3795. [23] 黄发明, 叶舟, 姚池, 等. 滑坡易发性预测不确定性: 环境因子不同属性区间划分和不同数据驱动模型的影响[J]. 地球科学, 2020(12): 4535-4549. HUANG Faming, YE Zhou, YAO Chi, et al. Uncertainties of landslide susceptibility prediction: different attribute interval divisions of environmental factors and different data-based models[J]. Earth Science, 2020(12): 4535-4549. [24] SHAO X Y, XU C, MA S Y, et al. Effects of seismogenic faults on the predictive mapping of probability to earthquake-triggered landslides[J]. ISPRS International Journal of Geo-Information, 2019, 8(8): 328. [25] NEWMARK N M. Effects of earthquakes on dams and embankments[J]. Geotechnique, 1965,15(2):139-160. [26] 李雪婧, 高孟潭, 徐伟进. 基于Newmark模型的概率地震滑坡危险性分析方法研究: 以甘肃天水地区为例[J]. 地震学报, 2019, 41(6):795-808. LI Xuejing, GAO Mengtan, XU Weijin. Probabilistic seismic slope displacement hazard analysis based on Newmark displacement model: take the area of Tianshui, Gansu province, China as an example[J]. Acta Seismologica Sinica, 2019, 41(6):795-808. [27] 刘甲美. 概率地震滑坡危险性区划方法及应用[D]. 北京: 中国地震局地球物理研究所,2015. LIU Jiamei. Method and application of landslide risk zoning in probability earthquake[D]. Beijing: Institute of Geophysics China Earthquake Administation,2015. [28] 李天袑, 杜其方. 鲜水河活动断裂带及强震危险性评估[M]. 成都: 四川省地震局, 1997. LI Tianzhao, DU Qifang. Xianshuihe active fault zone and strong earthquake risk assessment[M]. Chengdu: Sichuan Seismological Bureau, 1997. [29] 国家青藏高原科学数据中心. 中国1 km分辨率逐月降水量数据集(1901—2017)[EB/OL]. [2022-02-11]. https://doi.org/10.1016/j.agrformet.2016.11.129. National Tibetan Plateau Data Center. 1 km monthly precipitation dataset for China (1901—2017)[EB/OL]. [2022-02-11]. https://doi.org/10.1016/j.agrformet.2016.11.129. [30] 中华人民共和国质量监督检验检疫总局,中国国家标准化管理委员会. 中国地震动参数区划图:GB18306—2015[S]. 北京: 中国标准出版社, 2015. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration Committee. Seismic ground motion parameters zonation map of China: GB 18306—2015[S]. Beijing: Standards Press of China, 2015. [31] 邓起东.中国活动构造图[M]. 北京: 地震出版社, 2007. DENG Qidong. Map of active tectonics in China[M]. Beijing: Seismological Press, 2007. [32] 马思远, 许冲, 王涛, 等. 应用2类Newmark简易模型进行2008年汶川地震滑坡评估[J]. 地震地质, 2019, 41(3): 774-788. MA Siyuan, XU Chong, WANG Tao, et al. Application of two simplified Newmark models to the assessment of landslides triggered by the 2008 Wenchuan earthquake[J]. Seismology and Geology, 2019, 41(3): 774-788. [33] 中华人民共和国城乡建设部. 工程岩体分级标准:GB/T 50218—2014[S]. 北京: 中国计划出版社, 2015. Ministry of Urban-Rural Development of the People's Republic of China. Standard for engineering classification of rock mass: GB/T 50218—2014[S]. Beijing: China Planning Press, 2015. [34] CHEN Xiaoli, LIU Chunguo, WANG Mingming. A method for quick assessment of earthquake-triggered landslide hazards: a case study of the Mw6.1 2014 Ludian, China earthquake[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(4): 2449-2458. [35] 王涛. 汶川地震重灾区地质灾害危险性评估研究[D]. 北京: 中国地质科学院,2010. WANG Tao. Study on risk assessment of geological disasters in the hardest hit areas of Wenchuan earthquake[D]. Beijing: Chinese Academy of Geological Sciences,2010. [36] JIBSON R W, HARP E L, MICHAEL J A. A method for producing digital probabilistic seismic landslide hazard maps; an example from the Los Angeles, California, area[J]. 1998(1):98-113. [37] WANG Y B, RATHJE E. Probabilistic seismic landslide hazard maps including epistemic uncertainty[J]. Engineering Geology, 2015,196:313-324. [38] KHALAJ S, BAHOOTOROODY F, MAHDI ABAEI M, et al. A methodology for uncertainty analysis of landslides triggered by an earthquake[J]. Computers and Geotechnics, 2020, 117: 103262. [39] BARONI G, FACCHI A, GANDOLFI C, et al. Uncertainty in the determination of soil hydraulic parameters and its influence on the performance of two hydrological models of different complexity[J]. Hydrology and Earth System Sciences, 2010, 14(2): 251-270. |