测绘学报 ›› 2023, Vol. 52 ›› Issue (9): 1538-1547.doi: 10.11947/j.AGCS.2023.20220345

• 摄影测量学与遥感 • 上一篇    下一篇

一种联合空间约束与差异特征聚合的变化检测网络

韦春桃, 龚成, 周永绪   

  1. 重庆交通大学智慧城市学院, 重庆 400074
  • 收稿日期:2022-05-23 修回日期:2023-04-17 发布日期:2023-10-12
  • 通讯作者: 龚成 E-mail:embergcc@163.com
  • 作者简介:韦春桃(1968-),博士,教授,硕士生导师,主要研究方向遥感影像处理。E-mail:gxglwct@163.com

A change detection network with joint spatial constraints and differential feature aggregation

WEI Chuntao, GONG Cheng, ZHOU Yongxu   

  1. School of Smart City, Chongqing Jiaotong University, Chongqing 400074, China
  • Received:2022-05-23 Revised:2023-04-17 Published:2023-10-12

摘要: 变化检测旨在观测地物在不同时序中的表达差异。深度学习已成为实现这一任务的主流手段,现有基于深度学习的遥感变化检测方法中,普遍更专注于对图像中的深度特征进行学习,而忽略了不同层级特征之间语义优势及差距,从而导致检测性能不足。为此,本文提出了一种联合空间约束与差异特征聚合的变化检测网络,通过控制特征信息在网络中的流动,消除检测对象底层特征和高层语义信息之间差异性,提高预测结果的质量。首先,利用孪生网络并结合特征金字塔结构生成多尺度差异特征;然后,使用所提出的坐标自注意力机制(CSAM)对低层特征进行空间约束,强化对变化区域边缘结构及精确位置的学习,并结合经典的卷积注意力模块充分捕捉上下文变化信息;最后,使用门控融合机制提取通道关系,控制多尺度特征的融合,以生成边界清晰、内部完整的变化图像。在变化检测数据集CDD和LEVIR-CD上对本文方法进行了试验,与已有变化检测网络模型进行比较,本文方法在不同场景下均表现出最佳的检测效果。

关键词: 变化检测, 多尺度差异特征, 空间约束, 门控融合机制, 复杂场景

Abstract: Change detection aims to observe the expression differences of ground objects in different time series. Deep learning has become the mainstream method to achieve this task. In the existing remote sensing change detection methods based on deep learning, they generally focus more on learning deep semantic features in images, while ignoring the semantic advantages and gaps between different levels of features resulting in insufficient detection performance. To this end, this paper proposes a change detection network that combines spatial constraints and difference feature aggregation. By controlling the flow of feature information in the network, the difference between the low-level feature and high-level semantic information of the detection object is eliminated, and the quality of prediction results is improved. Firstly, the siamese network is used in combination with the feature pyramid structure to generate multi-scale differential features; Then, the proposed coordinate self attention mechanism (CSAM) is used to constrain the low-level features, strengthen the edge structure of the change area and the accurate position information, and combine the classical convolutional attention module to fully capture the context change feature information; Finally, the gated fusion mechanism is used to extract the channel relationship and control the fusion of multi-scale features to generate a change image with clear boundary and complete interior. A large number of experiments are carried out on the change detection dataset CDD and LEVIR-CD, and compared with the existing change detection network models, the proposed method shows the best detection effect in different scenarios.

Key words: change detection, multi-scale difference features, spatial constraints, gated fusion mechanism, complex scene

中图分类号: