[1] 龚健雅,张觅,胡翔云,等.智能遥感深度学习框架与模型设计[J].测绘学报, 2022, 51(4):475-487. DOI:10.11947/j.AGCS.2022. 20220027. GONG Jianya, ZHANG Mi, HU Xiangyun, et al. The design of deep learning framework and model for intelligent remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4):475-487. DOI:10.11947/j.AGCS.2022. 20220027. [2] 乔星星,施文灶,刘芫汐,等.基于ResNet双注意力机制的遥感图像场景分类[J].计算机系统应用, 2021, 30(8):243-248. QIAO Xingxing, SHI Wenzao, LIU Yuanxi, et al. Remote sensing image scene classification based on ResNet and dual attention mechanism[J]. Computer Systems&Applications, 2021, 30(8):243-248. [3] WANG Wang, LI Shaochun, WANG Wang, et al. A simple deep learning network for classification of 3 D mobile LiDAR point clouds[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(3):49-59. [4] 边小勇,费雄君,穆楠.基于尺度注意力网络的遥感图像场景分类[J].计算机应用, 2020, 40(3):872-877. BIAN Xiaoyong, FEI Xiongjun, MU Nan. Remote sensing image scene classification based on scale-attention network[J]. Journal of Computer Applications, 2020, 40(3):872-877. [5] 许夙晖,慕晓冬,赵鹏,等.利用多尺度特征与深度网络对遥感影像进行场景分类[J].测绘学报, 2016, 45(7):834-840. DOI:10.11947/j.AGCS.2016. 20150623. XU Suhui, MU Xiaodong, ZHAO Peng, et al. Scene classification of remote sensing image based on multi-scale feature and deep neural network[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(7):834-840. DOI:10.11947/j.AGCS.2016. 20150623. [6] 蔡之灵,翁谦,叶少珍,等.基于Inception-V3模型的高分遥感影像场景分类[J].国土资源遥感, 2020, 32(3):80-89. CAI Zhiling, WENG Qian, YE Shaozhen, et al. Remote sensing image scene classification based on Inception-V3[J]. Remote Sensing for Land&Resources, 2020, 32(3):80-89. [7] PAN S J, YANG Qiang. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10):1345-1359. [8] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016:2818-2826. [9] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31 st International Conference on Neural Information Processing Systems. Long Beach:ACM Press, 2017:6000-6010. [10] SWALPA K, ANKUR D, DANFENG H, et al. Multimodal fusion transformer for remote sensing image classification[EB/OL].[2022-04-29]. https://arxiv.org/abs/2203.16952. [11] HONG D, HAN Z, YAO J, et al. Spectral Former:rethinking hyperspectral image classification with transformers[EB/OL].[2022-04-29]. https://arxiv.org/abs/2107.02988. [12] BAZI Y, BASHMAL L, AL RAHHAL M M, et al. Vision transformers for remote sensing image classification[J]. Remote Sensing, 2021, 13(3):516. [13] 宋中山,梁家锐,郑禄,等.基于双向门控尺度特征融合的遥感场景分类[J].计算机应用, 2021, 41(9):2726-2735. SONG Zhongshan, LIANG Jiarui, ZHENG Lu, et al. Remote sensing scene classification based on bidirectional gated scale feature fusion[J]. Journal of Computer Applications, 2021, 41(9):2726-2735. [14] 龚希,吴亮,谢忠,等.融合全局和局部深度特征的高分辨率遥感影像场景分类方法[J].光学学报, 2019, 39(3):0301002. GONG Xi, WU Liang, XIE Zhong, et al. Classification method of high-resolution remote sensing scenes based on fusion of global and local deep features[J]. Acta Optica Sinica, 2019, 39(3):0301002. [15] 郑卓,方芳,刘袁缘,等.高分辨率遥感影像场景的多尺度神经网络分类法[J].测绘学报, 2018, 47(5):620-630. DOI:10.11947/j.AGCS.2018. 20170191. ZHENG Zhuo, FANG Fang, LIU Yuanyuan, et al. Joint multi-scale convolution neural network for scene classification of high resolution remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5):620-630. DOI:10.11947/j.AGCS.2018. 20170191. [16] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016:770-778. [17] LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer:hierarchical vision transformer using shifted windows[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal:IEEE, 2022:9992-10002. [18] XIE Saining, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017:5987-5995. [19] GLOROT X, BOR DE S A, BENGIO Y. Deep sparse rectifier neural networks[C]//Proceedings of the 14 th International Conference on Artificial Intelligence and Statistics. Sardinia:IEEE, 2011:315-323. [20] WU Hang, LIU Baozhen, SU Weihua, et al. Deep filter banks for land-use scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12):1895-1899. [21] ZHU Qiqi, ZHONG Yanfei, ZHAO Bei, et al. Bag-of-visual-words scene classifier with local and global features for high spatial resolution remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(6):747-751. [22] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32 nd International Conference on International Conference on Machine Learning. New York:ACM Press, 2015:448-456. [23] KINGMA D, BA J. Adam:a method for stochastic optimization[C]//Proceedings of the 3 rd International Conference for Learning Representations. Xi'an:IEEE, 2015, 1-13. [24] ZHANG Xiangyu, ZHOU Xinyu, LIN Mengxiao, et al. ShuffleNet:an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE, 2018:6848-6856. [25] HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8):2011-2023. [26] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of 2015 International Conference for Learning Representations. San Diego:ICLR, 2015:463-476. [27] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston:IEEE, 2015:1-9. [28] TAN M, LE Q V. EfficientNetV2:smaller models and faster training[C]//Proceedings of 2021 International Conference on Machine Learning. Xi'an:IEEE, 2021:10096-10106. [29] LIU Z, MAO H, WU C Y, et al. A ConvNet for the 2020 s[EB/OL].[2022-4-29]. https://arxiv.org/abs/2201.03545. [30] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16 x16 words:transformers for image recognition at scale[C]//Proceedings of the 9 th International Conference on Learning Representations. Virtual Event:IEEE, 2020:1-12. [31] CHEN Y, DAI X, CHEN D, et al. Mobile-Former:bridging mobile net and transformer[EB/OL].[2022-04-29]. https://arxiv.org/abs/2108.05895. [32] PENG Zhiliang, HUANG Wei, GU Shanzhi, et al. Conformer:local features coupling global representations for visual recognition[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal:IEEE, 2022:357-366. [33] GUO J, HAN K, WU H, et al. CMT:convolutional neural networks meet vision transformers[EB/OL].[2022-04-29]. https://arxiv.org/abs/2107.06263. [34] GUO M, LU C, LIU Z, et al. Visual attention network[EB/OL].[2022-04-29]. https://arxiv.org/abs/2202.09741. [35] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM:visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2):336-359. [36] SPRINGENBERG J T, DOSOVITSKIY A, BROX T, et al. Striving for simplicity:the all convolutional net[EB/OL].[2022-04-29]. https://arxiv.org/abs/1412.6806 v1 |