测绘学报 ›› 2023, Vol. 52 ›› Issue (10): 1749-1759.doi: 10.11947/j.AGCS.2023.20220637

• 摄影测量学与遥感 • 上一篇    下一篇

全Bregman散度和二部图相结合的高光谱图像稳健聚类算法

刘含1, 吴成茂2, 李昌兴3   

  1. 1. 西安邮电大学通信与信息工程学院, 陕西 西安 710121;
    2. 西安邮电大学电子工程学院, 陕西 西安 710121;
    3. 西安邮电大学理学院, 陕西 西安 710121
  • 收稿日期:2022-11-17 修回日期:2023-09-26 发布日期:2023-10-31
  • 作者简介:刘含(1998-),女,硕士,研究方向为遥感图像处理。E-mail:liuliuliu980224@163.com
  • 基金资助:
    国家自然科学基金(62071378)

Robust hyperspectral image clustering integrating total Bregman divergence and bipartite graph

LIU Han1, WU Chengmao2, LI Changxing3   

  1. 1. School of Communication and Information Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China;
    2. School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China;
    3. School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
  • Received:2022-11-17 Revised:2023-09-26 Published:2023-10-31
  • Supported by:
    The National Natural Science Foundation of China(No. 62071378)

摘要: 针对传统基于图的谱聚类算法底层计算复杂度高、聚类精度低,难以应用于大规模数据聚类,本文利用锚点与数据点之间的相似性度量,提出了一种基于图的聚类算法来处理高光谱图像分类问题,称为全Bregman散度和二部图相结合的高光谱图像稳健聚类算法(RTBBG)。首先,在构造二部图的过程中添加了高光谱图像的空间信息,使得高光谱图像丰富的空间信息得以充分利用;然后,利用全Bregman散度来优化传统的欧氏距离作为数据点与锚点之间新的相似性度量,使得构建的二部图更加稳定,增强了算法稳健性;最后,利用K-means算法直接进行光谱聚类得到最终聚类结果。通过在3个大规模高光谱数据集上进行测试,验证了本文算法的有效性。

关键词: 高光谱图像, 二部图, 全Bregman散度, 相似性度量, 空间信息

Abstract: In view of the high computational complexity and low clustering accuracy of traditional graph based spectral clustering algorithms, which are difficult to apply to large-scale data clustering, this paper proposes a graph based clustering algorithm to deal with hyperspectral image classification problems by using the similarity measurement between anchor points and data points, which is called robust hyperspectral image clustering integrating total Bregman divergence and bipartite graph (RTBBG). Firstly, the spatial information of hyperspectral image is added in the construction of bipartite graph, which makes full use of the rich spatial information of hyperspectral image. Secondly, the total Bregman divergence is used to optimize the traditional Euclidean distance as a similarity measure between data points and anchors, which makes the constructed bipartite graph more stable and enhances the robustness of the algorithm. Finally, K-means algorithm is used to directly cluster the spectra to obtain the final clustering results. The effectiveness of the algorithm is verified by testing on three large-scale hyperspectral datasets.

Key words: hyperspectral image, bipartite graph, total Bregman divergence, similarity measurement, spatial information

中图分类号: