| [1] |
王晓英. 地基GNSS层析对流层水汽若干关键技术研究[D]. 南京: 南京信息工程大学, 2013.
|
|
WANG Xiaoying. Research on some key technologies of ground-based GNSS tomography of tropospheric water vapor[D]. Nanjing: Nanjing University of Information Science & Technology, 2013.
|
| [2] |
王维, 宋淑丽, 王解先, 等. 长三角地区多模GNSS斜路径观测分布及水汽仿真层析[J]. 测绘学报, 2016, 45(2): 164-169. DOI:.
doi: 10.11947/j.AGCS.2016.20140648
|
|
WANG Wei, SONG Shuli, WANG Jiexian, et al. Distribution analysis of multi GNSS slant delays and simulated water vapor tomography in Yangtze River Delta[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(2): 164-169. DOI:.
doi: 10.11947/j.AGCS.2016.20140648
|
| [3] |
夏朋飞. 联合地基GPS及空基COSMIC的对流层水汽三维层析[D]. 长沙: 中南大学, 2013.
|
|
XIA Pengfei. Three-dimensional tomography of tropospheric water vapor combined with ground-based GPS and space-based COSMIC[D]. Changsha: Central South University, 2013.
|
| [4] |
DONG Zhounan, JIN Shuanggen. 3D water vapor tomography in Wuhan from GPS, BDS and GLONASS observations[J]. Remote Sensing, 2018, 10(1): 62.
|
| [5] |
赵庆志, 姚宜斌, 姚顽强, 等. 利用ECMWF改善射线利用率的三维水汽层析算法[J]. 测绘学报, 2018, 47(9): 1179-1187. DOI:.
doi: 10.11947/j.AGCS.2018.20170412
|
|
ZHAO Qingzhi, YAO Yibin, YAO Wanqiang, et al. A method to improve the utilization rate of satellite rays for three-dimensional water vapor tomography using the ECMWF data[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9): 1179-1187. DOI:.
doi: 10.11947/j.AGCS.2018.20170412
|
| [6] |
赵庆志, 姚宜斌, 罗亦泳. 附加辅助层析区域提高射线利用率的水汽反演方法[J]. 武汉大学学报(信息科学版), 2017, 42(9): 1203-1208, 1222.
|
|
ZHAO Qingzhi, YAO Yibin, LUO Yiyong. A method to improve the utilization of observation for water vapor tomography by adding assisted tomographic area[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1203-1208,1222.
|
| [7] |
姚宜斌, 赵庆志, 罗亦泳. 附加虚拟信号精化水汽层析模型的方法[J]. 武汉大学学报(信息科学版), 2017, 42(11): 1658-1664.
|
|
YAO Yibin, ZHAO Qingzhi, LUO Yiyong. An approach of imposing virtual signals to sophisticate water vapor tomographic model[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1658-1664.
|
| [8] |
张文渊, 张书毕, 郑南山, 等. GNSS/MODIS信号紧耦合水汽层析算法[J]. 测绘学报, 2021, 50(4): 496-508. DOI:.
doi: 10.11947/J.AGCS.2021.20200222
|
|
ZHANG Wenyuan, ZHANG Shubi, ZHENG Nanshan, et al. Tightly coupled water vapor tomography algorithm for combining GNSS and MODIS signals[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4): 496-508. DOI:.
doi: 10.11947/j.AGCS.2021.20200222
|
| [9] |
ZHANG Wenyuan, ZHANG Shubi, DING Nan, et al. A tropospheric tomography method with a novel height factor model including two parts: isotropic and anisotropic height factors[J]. Remote Sensing, 2020, 12(11): 1848.
|
| [10] |
张文渊, 张书毕, 郑南山, 等. 联合GNSS/RS多源数据反演三维大气水汽分布研究[J]. 地球物理学报, 65(6): 1951-1964.
|
|
ZHANG Wenyuan, ZHANG Shubi, ZHENG Nanshan, et al. 2022. Study on the retrieval of 3D atmospheric water vapor distribution using GNSS and RS multi-source data[J]. Chinese Journal of Geophysics(in Chinese), 65(6): 1951-1964.
|
| [11] |
ZHANG Wenyuan, ZHANG Shubi, DING Nan, et al. GNSS-RS tomography: retrieval of tropospheric water vapor fields using GNSS and RS observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 3077083.
|
| [12] |
ZHANG Wenyuan, ZHANG Shubi, CHANG Guobin, et al. A new hybrid observation GNSS tomography method combining the real and virtual inverted signals[J]. Journal of Geodesy, 2021, 95(12): 128.
|
| [13] |
赵庆志, 姚宜斌, 姚顽强. 顾及层析区域外测站的GNSS水汽层析建模方法[J]. 测绘学报, 2021, 50(3): 285-294. DOI:.
doi: 10.11947/J.AGCS.2021.20200111
|
|
ZHAO Qingzhi, YAO Yibin, YAO Wanqiang. A method to establish the tomography model considering the data of GNSS stations outside the research area[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(3): 285-294. DOI:.
doi: 10.11947/j.AGCS.2021.20200111
|
| [14] |
陈宏斌, 熊永良, 陈志胜, 等. 垂直不均匀分层的地基GPS层析水汽研究[J]. 测绘工程, 2015, 24(5): 11-14, 18.
|
|
CHEN Hongbin, XIONG Yongliang, CHEN Zhisheng, et al. Research on tomography of ground-based GPS water vapor with uneven vertical stratification[J]. Engineering of Surveying and Mapping, 2015, 24(5): 11-14,18.
|
| [15] |
范士杰, 陈岩, 彭秀英, 等. 地基GNSS水汽层析的自动垂直非均匀分层方法[J]. 大地测量与地球动力学, 2021, 41(9): 924-928.
|
|
FAN Shijie, CHEN Yan, PENG Xiuying, et al. Automatic vertical non-uniform stratification method for GNSS water vapor tomography[J]. Journal of Geodesy and Geodynamics, 2021, 41(9): 924-928.
|
| [16] |
王昊, 丁楠, 张文渊, 等. GNSS水汽层析的自适应非均匀指数分层方法[J]. 测绘学报, 2022, 51(3): 327-339. DOI:.
doi: 10.11947/J.AGCS.2022.20210126
|
|
WANG Hao, DING Nan, ZHANG Wenyuan, et al. An adaptive non-uniform vertical stratification for GNSS water vapor tomography[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 327-339. DOI:.
doi: 10.11947/J.AGCS.2022.20210126
|
| [17] |
YAO Yibin, ZHAO Qingzhi. A novel, optimized approach of voxel division for water vapor tomography[J]. Meteorology and Atmospheric Physics, 2017, 129(1): 57-70.
|
| [18] |
YAO Yao, SUN Sun, XU Chaoqian. Applicability of Bevis formula at different height levels and global weighted mean temperature model based on near-earth atmospheric temperature[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1): 1-11.
|
| [19] |
丁楠. 地基GNSS水汽层析关键技术研究[D]. 徐州: 中国矿业大学, 2018.
|
|
DING Nan. Research on key technologies of ground-based GNSS water vapor chromatography[D]. Xuzhou: China University of Mining and Technology, 2018.
|
| [20] |
赵庆志, 苏静, 杨鹏飞, 等. 利用GNSS PWV的AOD自适应预测方法[J]. 测绘学报, 2021, 50(10): 1279-1289. DOI:.
doi: 10.11947/J.AGCS.2021.20210052
|
|
ZHAO Qingzhi, SU Jing, YANG Pengfei, et al. AOD adaptive prediction method based on GNSS PWV[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10): 1279-1289. DOI:.
doi: 10.11947/J.AGCS.2021.20210052
|
| [21] |
赵庆志, 杜正, 姚顽强, 等. GNSS约束的MERSI/FY-3A PWV校准方法[J]. 测绘学报, 2022, 51(2): 159-168. DOI:.
doi: 10.11947/j.AGCS.2022.20210060
|
|
ZHAO Qingzhi, DU Zheng, YAO Wanqiang, et al. The MERSI/FY-3A PWV correction method based on GNSS[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2): 159-168. DOI:.
doi: 10.11947/j.AGCS.2022.20210060
|
| [22] |
赵庆志, 姚宜斌, 辛林洋. 融合ECMWF格网数据的水汽层析精化方法[J]. 武汉大学学报(信息科学版), 2021, 46(8): 1131-1138.
|
|
ZHAO Qingzhi, YAO Yibin, XIN Linyang. A method to sophisticate the water vapor tomography model by combining the ECMWF grid data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1131-1138.
|
| [23] |
张文渊, 张书毕, 左都美, 等. GNSS水汽层析的自适应代数重构算法[J]. 武汉大学学报(信息科学版), 2021, 46(9): 1318-1327.
|
|
ZHANG Wenyuan, ZHANG Shubi, ZUO Dumei, et al. Adaptive algebraic reconstruction algorithms for GNSS water vapor tomography[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1318-1327.
|
| [24] |
于胜杰, 柳林涛, 梁星辉. 约束条件对GPS水汽层析解算的影响分析[J]. 测绘学报, 2010, 39(5): 491-496.
|
|
YU Shengjie, LIU Lintao, LIANG Xinghui. Influence analysis of constraint conditions on GPS water vapor tomography[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(5): 491-496.
|
| [25] |
WANG Yizhu, LIU Hailei, ZHANG Yong, et al. Validation of FY-4A AGRI layer precipitable water products using radiosonde data[J]. Atmospheric Research, 2021, 253: 105502.
|
| [26] |
YAO Yibin, ZHAO Qingzhi. Maximally using GPS observation for water vapor tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7185-7196.
|
| [27] |
ZHANG Wenyuan, ZHANG Shubi, MOELLER G, et al. An adaptive-degree layered function-based method to GNSS tropospheric tomography[J]. GPS Solutions, 2023, 27(2): 67.
|