[1] |
黄良珂, 莫智翔, 刘立龙, 等. 顾及时变递减因子的中国大陆地区大气可降水量垂直改正模型[J]. 测绘学报, 2021, 50(10): 1320-1330. DOI:.
doi: 10.11947/j.AGCS.2021.20200530
|
|
HUANG Liangke, MO Zhixiang, LIU Lilong, et al. An empirical model for the vertical correction of precipitable water vapor considering the time-varying lapse rate for mainland China[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10): 1320-1330. DOI:.
doi: 10.11947/j.AGCS.2021.20200530
|
[2] |
姚宜斌, 赵庆志. GNSS对流层水汽监测研究进展与展望[J]. 测绘学报, 2022, 51(6): 935-952. DOI:.
doi: 10.11947/j.AGCS.2022.20220039
|
|
YAO Yibin, ZHAO Qingzhi. Research progress and prospect of monitoring tropospheric water vapor by GNSS technique[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 935-952. DOI:.
doi: 10.11947/j.AGCS.2022.20220039
|
[3] |
饶晨泓, 毕鑫鑫, 陈光华, 等. 近海台风对“21·7”河南极端暴雨过程水汽通量和动、热力条件影响的模拟[J]. 大气科学, 2022, 46(6): 1577-1594.
|
|
RAO Chenhong, BI Xinxin, CHEN Guanghua, et al. A numerical simulation on the impacts of the offshore typhoons on water vapor flux, dynamic and thermal conditions of the extreme rainstorm event in Henan province in July 2021[J]. Chinese Journal of Atmospheric Sciences(in Chinese), 46(6): 1577-1594.
|
[4] |
BONAFONI S, BIONDI R, BRENOT H, et al. Radio occultation and ground-based GNSS products for observing, understanding and predicting extreme events: a review[J]. Atmospheric Research, 2019, 230: 104624.
|
[5] |
HE Q, ZHANG K, WU S, et al. An investigation of atmospheric temperature and pressure using an improved spatio-temporal Kriging model for sensing GNSS-derived precipitable water vapor[J]. Spatial Statistics, 2022, 51: 100664.
|
[6] |
YU S, LIU Z. Temporal and spatial impact of precipitable water vapor on GPS relative positioning during the tropical cyclone Hato (2017) in Hong Kong and Taiwan[J]. Earth and Space Science, 2021, 8(4): e2020EA001371.
|
[7] |
朱明晨. GNSS水汽反演技术精化及台风水汽动态监测[D]. 南京: 东南大学, 2022.
|
|
ZHU Mingchen. GNSS water vapor inversion technology improvement and dynamic monitoring during typhoon events[D]. Nanjing: Southeast University, 2022.
|
[8] |
WON J, KIM D. Analysis of temporal and spatial variation of precipitable water vapor according to path of typhoon EWINIAR using GPS permanent stations[J]. Journal of Positioning, Navigation, and Timing, 2015, 4(2): 87-95.
|
[9] |
ZHAO Q, MA X, YAO W, et al. A new typhoon-monitoring method using precipitation water vapor[J]. Remote Sensing, 2019, 11(23): 2845.
|
[10] |
HE Q, ZHANG K, WU S, et al. Real-time GNSS-derived PWV for typhoon characterizations: a case study for super typhoon Mangkhut in Hong Kong[J]. Remote Sensing, 2019, 12(1): 104.
|
[11] |
KANG I, PARK J. Use of GNSS-derived PWV for predicting the path of typhoon: case studies of Soulik and Kongrey in 2018[J]. Journal of Surveying Engineering, 2021, 147(4): 04021018.
|
[12] |
NYKIEL G, FIGURSKI M, BALDYSZ Z. Analysis of GNSS sensed precipitable water vapour and tropospheric gradients during the derecho event in Poland of 11th August 2017[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2019, 193: 105082.
|
[13] |
赵庆志. 地基GNSS水汽反演关键技术研究及其应用[D]. 武汉: 武汉大学, 2017.
|
|
ZHAO Qingzhi. Studies on the key technologies in water vapor inversion using ground-based GNSS and its applications[D]. Wuhan: Wuhan University, 2017.
|
[14] |
SHOJI Y, KUNII M, SAITO K. Mesoscale data assimilation of Myanmar cyclone Nargis part II: assimilation of GPS-derived precipitable water vapor[J]. Journal of the Meteorological Society of Japan, 2011, 89(1): 67-88.
|
[15] |
TU M, ZHANG W, BAI J, et al. Spatio-temporal variations of precipitable water vapor and horizontal tropospheric gradients from GPS during Typhoon Lekima[J]. Remote Sensing, 2021, 13(20): 4082.
|
[16] |
LI Z, WANG J, WEI C, et al. Analysis of the temporal and spatial characteristics of PWV and rainfall with the typhoon movement: a case study of ‘Meihua’ in 2022[J]. Atmosphere, 2023, 14(8): 1313.
|
[17] |
WANG S, QIAO X. A local data assimilation method (local DA v1.0) and its application in a simulated typhoon case[J]. Geoscientific Model Development, 2022, 15(23): 8869-8897.
|
[18] |
何琦敏. 地基GNSS水汽反演及其在极端天气中的应用研究[D]. 徐州: 中国矿业大学, 2021.
|
|
HE Qimin. Water vapor retrieved from ground-based GNSS and its applications in extreme weather studies[D]. Xuzhou: China University of Mining and Technology, 2021.
|
[19] |
张克非, 李浩博, 王晓明, 等. 地基GNSS大气水汽探测遥感研究进展和展望[J]. 测绘学报, 2022, 51(7): 1172-1191. DOI:.
doi: 10.11947/j.AGCS.2022.20220149
|
|
ZHANG Kefei, LI Haobo, WANG Xiaoming, et al. Recent progresses and future prospectives of ground-based GNSS water vapor sounding[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1172-1191. DOI:.
doi: 10.11947/j.AGCS.2022.20220149
|
[20] |
张雅杰. T市S局测绘类国家秘密信息保护机制研究[D]. 天津: 天津大学, 2019.
|
|
ZHANG Yajie. Study on the protection mechanism of surveying and mapping state secret information in S Bureau of T city[D]. Tianjin: Tianjin University, 2019.
|
[21] |
黎峻宇, 姚宜斌, 刘立龙, 等. 基于多源数据和广义回归神经网络的ZWD预报模型[J]. 测绘学报, 2023, 52(9): 1492-1503. DOI:.
doi: 10.11947/j.AGCS.2023.20220084
|
|
LI Junyu, YAO Yibin, LIU Lilong, et al. A predicting ZWD model based on multi-source data and generalized regression neural network[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1492-1503. DOI:.
doi: 10.11947/j.AGCS.2023.20220084
|
[22] |
LI J, ZHANG Q, LIU L, et al. A refined zenith tropospheric delay model for mainland China based on the global pressure and temperature 3 (GPT3) model and random forest[J]. GPS Solutions, 2023, 27(4): 172.
|
[23] |
HUANG L, ZHU G, PENG H, et al. An improved global grid model for calibrating zenith tropospheric delay for GNSS applications[J]. GPS Solutions, 2023, 27(1): 17.
|
[24] |
THAYER G D. An improved equation for the radio refractive index of air[J]. Radio Science, 1974, 9(10): 803-807.
|
[25] |
LIAN D, HE Q, LI L, et al. A novel method for monitoring tropical cyclones' movement using GNSS zenith tropospheric delay[J]. Remote Sensing, 2023, 15(13): 3247.
|
[26] |
BEVIS M, BUSINGER S, HERRING T A, et al. GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system[J]. Journal of Geophysical Research: Atmospheres, 1992, 97(D14): 15787-15801.
|
[27] |
YAO Yibin, SUN Zhangyu, XU Chaoqian. Applicability of Bevis formula at different height levels and global weighted mean temperature model based on near-earth atmospheric temperature[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1): 1-11.
|
[28] |
PAVLIS N K, HOLMES S A, KENYON S C, et al. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)[J]. Journal of Geophysical Research (Solid Earth), 2012, 117: B04406.
|
[29] |
VEDEL H. Conversion of WGS84 geometric heights to NWP model HIRLAM geopotential heights, Danish Meteorological Institute[J/OL]. [2023-04-05]. https://www.dmi.dk/fileadmin/Rapporter/SR/sr00-04.pdf.
|
[30] |
YING M, ZHANG W, YU H, et al. An overview of the China meteorological administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 287-301.
|
[31] |
LU Xiaoqin, YU Hui, YING Ying, et al. Western North Pacific tropical cyclone database created by the China Meteorological Administration[J]. Advances in Atmospheric Sciences, 2021, 38(4): 690-699.
|
[32] |
TAN J, CHEN B, WANG W, et al. Evaluating precipitable water vapor products from Fengyun-4A meteorological satellite using radiosonde, GNSS, and ERA5 Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-12.
|
[33] |
OFFILER D, JONES J, BENNIT G, et al. EIG EUMETNET GNSS water vapour programme (E-GVAP-II)[J/OL]. [2023-05-15]. https://egvap.dmi.dk.
|