[1] |
余建胜, 赵斌, 谭凯, 等. 汶川地震震后GNSS形变分析[J]. 测绘学报, 2018, 47(9):1196-1206.DOI:10.11947/j.AGCS.2018.20170434.
|
|
YU Jiansheng, ZHAO Bin, TAN Kai, et al. Analysis of GNSS postseismic deformation of Wenchuan Earthquake [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9):1196-1206.DOI:10.11947/j.AGCS.2018.20170434.
|
[2] |
SAKAUE H, NISHIMURA T, FUKUDA J, et al. Spatiotemporal evolution of long- and short-term slow slip events in the tokai region, central Japan, estimated from a very dense GNSS network during 2013—2016[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(12):13207-13226.
|
[3] |
YAO Y, YANG Y, SUN H, et al. Geodesy discipline: progress and perspective[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4):1-10.
|
[4] |
苏小宁, 石睿娟, 鲍庆华, 等. GNSS连续观测站构造运动变化特征自适应提取方法[J]. 测绘学报, 2023, 52(8):1245-1254.DOI:10.11947/j.AGCS.2023.20220675.
|
|
SU Xiaoning, SHI Ruijuan, BAO Qinghua, et al. Self-adaptive extraction method of tectonic movement change recorded by GNSS continuous observations[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(8):1245-1254.DOI:10.11947/j.AGCS.2023.20220675.
|
[5] |
DANG Y, WANG H, SUN F, et al. Maintenance of millimeter-level geodetic reference framework[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(3):9-18.
|
[6] |
李威, 鲁铁定, 贺小星, 等. 基于Prophet-RF模型的GNSS高程坐标时间序列预测分析[J]. 大地测量与地球动力学, 2021, 41(2):116-121.
|
|
LI Wei, LU Tieding, HE Xiaoxing, et al. Prediction and analysis of GNSS vertical coordinate time series based on prophet-RF model[J]. Journal of Geodesy and Geodynamics, 2021, 41(2):116-121.
|
[7] |
WANG Jian, JIANG Weiping, LI Zhao, et al. A new multi-scale sliding window LSTM framework (MSSW-LSTM): a case study for GNSS time-series prediction[J]. Remote Sensing, 2021, 13(16):3328.
|
[8] |
TAO Rui, LU Tieding, CHENG Yuanming, et al. An improved GNSS vertical time series prediction model using EWT[C]//Proceedings of 2021 China Satellite Navigation Conference. Singapore: Springer, 2021: 298-313.
|
[9] |
鲁铁定, 李祯. 基于Prophet-XGBoost模型的GNSS高程时间序列预测[J]. 大地测量与地球动力学, 2022, 42(9):898-903.
|
|
LU Tieding, LI Zhen. Prediction of GNSS vertical coordinate time series based on Prophet-XGBoost model[J]. Journal of Geodesy and Geodynamics, 2022, 42(9):898-903.
|
[10] |
鲁铁定, 李祯, 贺小星, 等. 融合VMD和XGBoost算法的GNSS高程时间序列预测方法[J]. 测绘学报, 2023, 52(8):1235-1244.DOI:10.11947/j.AGCS.2023.20220052.
|
|
LU Tieding, LI Zhen, HE Xiaoxing, et al. GNSS vertical time series prediction method integrating VMD and XGBoost algorithms[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(8):1235-1244. DOI:10.11947/j.AGCS.2023.20220052.
|
[11] |
ALEVIZAKOU E G, SIOLAS G, PANTAZIS G. Short-term and long-term forecasting for the 3D point position changing by using artificial neural networks[J]. ISPRS International Journal of Geo-Information, 2018, 7(3):86.
|
[12] |
GAO Wenzong, LI Zhao, CHEN Qusen, et al. Modelling and prediction of GNSS time series using GBDT, LSTM and SVM machine learning approaches[J]. Journal of Geodesy, 2022, 96(10):71.
|
[13] |
LI Zhuguo, LU Tieding, HE Xiaoxing, et al. An improved cyclic multi model-extreme gradient boosting (CMM-XGBoost) forecasting algorithm on the GNSS vertical time series[J]. Advances in Space Research, 2023, 71(1):912-935.
|
[14] |
WANG X, CHENG Y, WU S, et al. An effective toolkit for the interpolation and gross error detection of GPS time series[J]. Survey Review, 2016, 48(348):202-211.
|
[15] |
王方超, 吕志平, 吕浩, 等. 基于RegEM算法的GPS坐标时间序列插值应用分析[J]. 大地测量与地球动力学, 2020, 40(1):45-50.
|
|
WANG Fangchao, LÜ Zhiping, LÜ Hao, et al. Application analysis of GPS coordinate time series interpolation based on RegEM algorithm[J]. Journal of Geodesy and Geodynamics, 2020, 40(1):45-50.
|
[16] |
谢春桥, 匡翠林. 顾及空间相关性的GNSS坐标序列插值比较[J]. 导航定位学报, 2020, 8(4):85-92.
|
|
XIE Chunqiao, KUANG Cuilin. Comparison of interpolation methods for GNSS coordinate time series considering spatial correlation[J]. Journal of Navigation and Positioning, 2020, 8(4):85-92.
|
[17] |
ZHANG Shengkai, GONG Li, ZENG Qi, et al. Imputation of GPS coordinate time series using MissForest[J]. Remote Sensing, 2021, 13(12):2312.
|
[18] |
QIU Xiaomeng. Iteration empirical mode decomposition method for filling the missing data of GNSS position time series[J]. Acta Geodynamica et Geomaterialia, 2022:271-279.
|
[19] |
LIU Ning, DAI Wujiao, SANTERRE R, et al. A Matlab-based Kriged Kalman filter software for interpolating missing data in GNSS coordinate time series[J]. GPS Solutions, 2017, 22(1):25.
|
[20] |
BAO Zhi, CHANG Guobin, ZHANG Laihong, et al. Filling missing values of multi-station GNSS coordinate time series based on matrix completion[J]. Measurement, 2021, 183:109862.
|
[21] |
LI Zhen, LU Tieding, YU Kegen, et al. Interpolation of GNSS position time series using GBDT, XGBoost, and RF machine learning algorithms and models error analysis[J]. Remote Sensing, 2023, 15(18):4374.
|
[22] |
姜卫平, 李昭, 魏娜, 等. 大地测量坐标框架建立的进展与思考[J]. 测绘学报, 2022, 51(7):1259-1270.DOI:10.11947/j.AGCS.2022.20220232.
|
|
JIANG Weiping, LI Zhao, WEI Na, et al. Progress and thoughts on establishment of geodetic coordinate frame[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7):1259-1270. DOI:10.11947/j.AGCS.2022.20220232.
|
[23] |
陈军, 刘万增, 武昊, 等. 智能化测绘的基本问题与发展方向[J]. 测绘学报, 2021, 50(8):995-1005. DOI:10.11947/j.AGCS.2021.20210235.
|
|
CHEN Jun, LIU Wanzeng, WU Hao, et al. Smart surveying and mapping: fundamental issues and research agenda[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):995-1005.DOI:10.11947/j.AGCS.2021.20210235.
|
[24] |
史文中, 张敏. 人工智能用于遥感目标可靠性识别:总体框架设计、现状分析及展望[J]. 测绘学报, 2021, 50(8):1049-1058.DOI:10.11947/j.AGCS.2021.20210095.
|
|
SHI Wenzhong, ZHANG Min. Artificial intelligence for reliable object recognition from remotely sensed data: overall framework design, review and prospect[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):1049-1058. DOI:10.11947/j.AGCS.2021.20210095.
|
[25] |
陈军, 艾廷华, 闫利, 等. 智能化测绘的混合计算范式与方法研究 [J/OL]. 测绘学报: 1-19 [2024-05-18].http://kns.cnki.net/kcms/detail/11.2089.P.20240415.1049.002.html.
|
|
CHEN Jun, AI Tinghua, YAN Li, et al. Hybrid computational paradigm and methods for intelligentized surveying and mapping[J/OL]. Acta Geodaetica et Cartographica Sinica: 1-19 [2024-05-18]. http://kns.cnki.net/kcms/detail/11.2089.P.20240415.1049.002.html.
|
[26] |
SCHAPIRE R E. Explaining AdaBoost[M]//SCHÖLKOPF B, LUO Zhiyuan, VOVK V, et al. Empirical inference. Berlin: Springer, 2013: 37-52.
|
[27] |
NATRAS R, SOJA B, SCHMIDT M. Ensemble machine learning of random forest, AdaBoost and XGBoost for vertical total electron content forecasting[J]. Remote Sensing, 2022, 14(15):3547.
|
[28] |
ALTUNTAS C, IBAN M C, ŞENTÜRK E, et al. Machine learning-based snow depth retrieval using GNSS signal-to-noise ratio data[J]. GPS Solutions, 2022, 26(4):117.
|
[29] |
孙为, 朱明晨. 中国区域BP-Adaboost强预测器对流层天顶延迟建模研究[J]. 大地测量与地球动力学, 2022, 42(1):35-40.
|
|
SUN Wei, ZHU Mingchen. Study on modeling of tropospheric zenith delay in China with BP-AdaBoost strong predictor[J]. Journal of Geodesy and Geodynamics, 2022, 42(1):35-40.
|
[30] |
鲁铁定, 陶蕊, 贺小星, 等. 顾及噪声影响的GNSS高程序列预测Prophet方法[J]. 国防科技大学学报, 2023, 45(2):121-130.
|
|
LU Tieding, TAO Rui, HE Xiaoxing, et al. Prophet method of GNSS vertical time series prediction considering the influence of noise[J]. Journal of National University of Defense Technology, 2023, 45(2):121-130.
|