测绘学报 ›› 2024, Vol. 53 ›› Issue (6): 1077-1085.doi: 10.11947/j.AGCS.2024.20230434

• 智能化测绘 • 上一篇    下一篇

顾及地球物理效应的GNSS高程时间序列AdaBoost预测和插值方法

鲁铁定1,2(), 李祯1()   

  1. 1.东华理工大学测绘与空间信息工程学院,江西 南昌 330013
    2.自然资源部环鄱阳湖区域矿山环境监测与治理重点实验室,江西 南昌 330013
  • 收稿日期:2023-10-10 发布日期:2024-07-22
  • 通讯作者: 李祯 E-mail:tdlu@whu.edu.cn;lizhenhd@163.com
  • 作者简介:鲁铁定(1974—),男,博士,教授,研究方向为测量数据处理。 E-mail:tdlu@whu.edu.cn
  • 基金资助:
    国家自然科学基金(42061077)

Prediction and interpolation of GNSS vertical time series based on the AdaBoost method considering geophysical effects

Tieding LU1,2(), Zhen LI1()   

  1. 1.School of Surveying and Geoinformation Engineering, East China University of Technology, Nanchang 330013, China
    2.Key Laboratory of Mine Environmental Monitoring and Improving around Poyang Lake, Ministry of Natural Resources, Nanchang 330013, China
  • Received:2023-10-10 Published:2024-07-22
  • Contact: Zhen LI E-mail:tdlu@whu.edu.cn;lizhenhd@163.com
  • About author:LU Tieding (1974—), male, PhD, professor, majors in measurement data processing. E-mail: tdlu@whu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(42061077)

摘要:

传统的GNSS高程时间序列预测和插值方法仅考虑时间变量,具有明显的局限性。本文顾及地球物理效应的影响,通过温度、大气压强、极移等数据和GNSS高程时间序列数据构建回归问题,使用自适应提升(AdaBoost)算法建模。为了验证模型的预测和插值性能,试验选取4个GNSS站的高程时间序列进行分析。建模试验表明,相较于Prophet模型,AdaBoost模型的拟合精度提升了约35%;预测结果表明,在12个月的预测周期内,AdaBoost模型在4个GNSS站的MAE值为4.0~4.5 mm,RMSE值约为5.0~6.0 mm;插值试验表明,相较于三次样条插值方法,AdaBoost插值模型的精度约提升了15%~28%。预测和插值试验表明,顾及地球物理效应的AdaBoost模型可以应用于GNSS高程时间序列预测与插值。

关键词: GNSS高程时间序列, 地球物理效应, 预测, 插值, 自适应提升算法

Abstract:

Traditional GNSS vertical time series prediction and interpolation methods only consider time variables and have obvious limitations. This study takes into account the impact of geophysical effects and constructs a regression problem using temperature, atmospheric pressure, polar motion, and GNSS vertical time series data, uses the adaptive boost (AdaBoost) algorithm for modeling. To verify the prediction and interpolation performance of the model, the vertical time series from 4 GNSS stations were selected for analysis. The modeling experiment shows that compared to the Prophet model, the fitting accuracy of AdaBoost model has been improved by 35%. The prediction results indicate that within a 12 month prediction period, the MAE values of the AdaBoost model at four GNSS stations are approximately 4.0~4.5 mm, and the RMSE values are approximately 5.0~6.0 mm. The interpolation experiment shows that compared to the cubic spline interpolation method, the accuracy of AdaBoost interpolation model has been improved by about 15%~28%. Our experiments have shown that the AdaBoost model considering geophysical effects can be applied to the prediction and interpolation of GNSS vertical time series.

Key words: GNSS vertical time series, geophysical effects, prediction, interpolation, adaptive boosting algorithm

中图分类号: