[1] |
OLVER F W. NIST handbook of mathematical functions[M]. Cambridge: Cambridge University Press, 2010: 351-352.
|
[2] |
HOLMES S A, PAVLIS N K. Some aspects of harmonic analysis of data gridded on the ellipsoid [C]//Proceedings of the 1st International Symposium of the International Gravity Field Service. Ankara: Command of Mapp, 2007: 151-156.
|
[3] |
HOBSONB E W. The theory of spherical and ellipsoidal harmonics[M]. Cambridge: The University Press, 1931: 180-181.
|
[4] |
HECK B. On the linearized boundary value problems of physical geodesy [J]. Reports of the Department of Geodetic Science and Surveying, 1991(407):1-63.
|
[5] |
JEKELI C. The exact transformation between ellipsoidal and spherical harmonic expansions [J]. Manuscripta Geodaetica, 1988, 13(2):106-113.
|
[6] |
GLEASON D. Comparing ellipsoidal corrections to the transformation between the geopotential's spherical and ellipsoidal spectrums [J]. Manuscripta Geodaetica, 1988, 13(2):114-129.
|
[7] |
SONA G. Numerical problems in the computation of ellipsoidal harmonics[J]. Journal of Geodesy, 1995, 70(1):117-126.
|
[8] |
MARTINEC Z, GRAFAREND E W. Solution to the stokes boundary-value problem on an ellipsoid of revolution[J]. Studia Geophysica et Geodaetica, 1997, 41(2):103-129.
|
[9] |
ARDESTANIV E, MARTINEC Z. Ellipsoidal stokes boundary-value problem with ellipsoidal corrections in the boundary condition[J]. Studia Geophysica et Geodaetica, 2001, 45(2):109-126.
|
[10] |
HOLOTA P. Classical methods for non-spherical boundary problems in physical geodesy [C]//Proceedings of 1995 International Association of Geodesy. Milano: Springer, 1995: 315-324.
|
[11] |
MAUS S. An ellipsoidal harmonic representation of Earth's lithospheric magnetic field to degree and order 720 [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(6):125-128.
|
[12] |
FUKUSHIMA T. Prolate spheroidal harmonic expansion of gravitational field[J]. The Astronomical Journal, 2014, 147(6):152.
|
[13] |
SEBERA J, BOUMAN J, BOSCH W. On computing ellipsoidal harmonics using Jekeli's renormalization[J]. Journal of Geodesy, 2012, 86(9):713-726.
|
[14] |
梁磊, 于锦海, 万晓云. 椭球谐和球谐系数之间一个简单的转换关系[J]. 测绘学报, 2019, 48(2):185-190. DOI: 10.11947/j.AGCS.2019.20180222.
|
|
LIANG Lei, YU Jinhai, WAN Xiaoyun. A simple transformation between ellipsoidal harmonic coefficients and spherical harmonic coefficients[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2):185-190. DOI: 10.11947/j.AGCS.2019.20180222.
|
[15] |
杨正辉, 魏子卿, 马健. 第二类连带勒让德函数及其一阶、二阶导数的递推计算方法[J]. 武汉大学学报(信息科学版), 2020, 45(2):213-218.
|
|
YANG Zhenghui, WEI Ziqing, MA Jian. Recursive calculation method for the second kind of associated Legendre functions and its first and second derivatives[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2):213-218.
|
[16] |
HEISKANENW A, MORITZ H. Physical geodesy[J]. Bulletin Géodésique, 1967, 86(1):491-492.
|
[17] |
THONG N, GRAFAREND E. A spheroidal harmonic model of the terrestrial gravitational field [J]. Manuscripta Geodaetica, 1989, 14(5):285-304.
|
[18] |
SONA G. Developing and testing the ellipsoidal gravity model manipulator ELGRAM [J]. Institut Geographique et Statistique du Burundi Bulletin, 2002, 12:48-61.
|
[19] |
PETROVSKAYA M S, VERSHKOV A N. Simplified relations between the ellipsoidal and spherical harmonic coefficients of the external earth's potential [J]. Bollettino di Geodesia et Scienze Affini 2000, 59(1):57-72.
|
[20] |
PETROVSKAYA M S, VERSHKOV A N. Optimizing expansions of the Earth's gravity potential and its derivatives over ellipsoidal harmonics[J]. Solar System Research, 2013, 47(5):376-385.
|
[21] |
VERSHKOV A N. Determination of the spherical harmonic coefficients from the ellipsoidal harmonic coefficients of the Earth's external potential [J]. Artificial Satellites, 2002, 37(4):157-168.
|
[22] |
SEBERA J, BOUMAN J, BOSCH W. On computing ellipsoidal harmonics using Jekeli's renormalization[J]. Journal of Geodesy, 2012, 86(9):713-726.
|
[23] |
ABRAMOWITZ M, STEGUN I A. Handbook of mathematical functions with formulas, graphs, and mathematical tables [M]. New York: Dover Publications Inc, 1964: 556-557.
|
[24] |
AOMOTO K, KITA M. Theory of hypergeometric functions[M]. Tokyo: Springer, 2011.
|
[25] |
SEBERA J, BEZDEK A, KOSTELECK'Y J, et al. An oblate ellipsoidal approach to update a high-resolution geopotential model over the oceans: study case of EGM2008 and DTU10[J]. Advances in Space Research, 2016, 57(1):2-18.
|