测绘学报 ›› 2024, Vol. 53 ›› Issue (8): 1505-1516.doi: 10.11947/j.AGCS.2024.20230530
王云鹏1,2(), 刘晓刚1,2(), 李琦3, 李端1,2, 方柳1,2
收稿日期:
2023-11-16
发布日期:
2024-09-25
通讯作者:
刘晓刚
E-mail:wangyp1813@163.com;wangyp1813@163.com;liuxuyanchu2022@163.com
作者简介:
王云鹏(1986—),男,硕士,助理研究员,研究方向为物理大地测量。E-mail:wangyp1813@163.com
基金资助:
Yunpeng WANG1,2(), Xiaogang LIU1,2(), Qi LI3, Duan LI1,2, Liu FANG1,2
Received:
2023-11-16
Published:
2024-09-25
Contact:
Xiaogang LIU
E-mail:wangyp1813@163.com;wangyp1813@163.com;liuxuyanchu2022@163.com
About author:
WANG Yunpeng (1986—), male, master, assistant researcher, majors in physical geodesy. E-mail: wangyp1813@163.com
Supported by:
摘要:
本文基于椭球谐分析,提出了超高阶地球重力场模型构建的局部积分改进迭代法和全球积分改进迭代法,解决了传统的局部积分改进法存在的局限性,有效提高了改进模型在中国地区的适用精度。选择EGM2008、EIGEN-6C4地球重力场模型作为初始模型,利用中国及周边地区最新的5'×5'实测格网平均重力异常数据,构建了DQM2022系列超高阶地球重力场模型,其完全阶次均为2190。采用地面实测重力异常、GNSS/水准、天文大地垂线偏差等数据对改进模型进行精度评估。结果显示:①相对于初始模型,改进模型表示中国地区重力场的精度显著提高,重力异常精度提高了2.4~2.8 mGal,高程异常精度提高了1.0~2.4 cm,垂线偏差精度提高了0.07″~0.15″;②在表示中国地区重力场时,基于EIGEN-6C4初始模型构建的改进模型精度最高,高程异常精度约为10.6 cm,垂线偏差精度约为2.1″。
中图分类号:
王云鹏, 刘晓刚, 李琦, 李端, 方柳. DQM2022系列超高阶地球重力场模型构建及其精度评估[J]. 测绘学报, 2024, 53(8): 1505-1516.
Yunpeng WANG, Xiaogang LIU, Qi LI, Duan LI, Liu FANG. Construction of series ultra-high-degree Earth's gravity field models DQM2022 and their precision evaluation[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1505-1516.
表3
中国地区高程异常误差"
区域 | 比对项目 | EGM2008 | EIGEN-6C4 | DQM2022RA | DQM2022GA | DQM2022RB | DQM2022GB |
---|---|---|---|---|---|---|---|
区域1 | 最大值 | 1.104 | 0.922 | 0.906 | 0.919 | 0.658 | 0.656 |
最小值 | -0.903 | -0.584 | -0.795 | -0.819 | -0.116 | -0.109 | |
平均值 | 0.259 | 0.271 | 0.260 | 0.260 | 0.269 | 0.269 | |
标准差 | 0.165 | 0.118 | 0.148 | 0.149 | 0.089 | 0.090 | |
区域2 | 最大值 | 0.610 | 0.550 | 0.562 | 0.576 | 0.511 | 0.529 |
最小值 | 0.012 | 0.052 | -0.008 | -0.011 | 0.041 | 0.048 | |
平均值 | 0.285 | 0.281 | 0.281 | 0.281 | 0.277 | 0.278 | |
标准差 | 0.097 | 0.081 | 0.089 | 0.088 | 0.070 | 0.070 | |
区域3 | 最大值 | 1.425 | 0.894 | 1.267 | 1.194 | 0.662 | 0.647 |
最小值 | -1.424 | -0.265 | -1.614 | -1.570 | -0.339 | -0.300 | |
平均值 | 0.236 | 0.237 | 0.242 | 0.245 | 0.243 | 0.246 | |
标准差 | 0.316 | 0.141 | 0.311 | 0.305 | 0.135 | 0.134 | |
区域4 | 最大值 | 1.125 | 0.728 | 0.914 | 0.915 | 0.581 | 0.602 |
最小值 | -0.442 | -0.274 | -0.464 | -0.441 | -0.152 | -0.158 | |
平均值 | 0.337 | 0.287 | 0.300 | 0.305 | 0.247 | 0.251 | |
标准差 | 0.364 | 0.213 | 0.350 | 0.352 | 0.180 | 0.186 | |
区域5 | 最大值 | 0.627 | 0.598 | 0.536 | 0.562 | 0.575 | 0.582 |
最小值 | -0.782 | -0.258 | -0.656 | -0.663 | -0.239 | -0.205 | |
平均值 | 0.047 | 0.086 | 0.062 | 0.059 | 0.103 | 0.100 | |
标准差 | 0.198 | 0.182 | 0.185 | 0.187 | 0.155 | 0.153 | |
全国 | 最大值 | 1.730 | 0.955 | 1.958 | 1.979 | 0.815 | 0.771 |
最小值 | -1.424 | -0.695 | -1.614 | -1.570 | -0.539 | -0.324 | |
平均值 | 0.254 | 0.262 | 0.256 | 0.256 | 0.263 | 0.262 | |
标准差 | 0.194 | 0.130 | 0.184 | 0.182 | 0.106 | 0.106 |
表4
中国地区垂线偏差误差"
数据类型 | 比对项目 | EGM2008 | EIGEN-6C4 | DQM2022RA | DQM2022GA | DQM2022RB | DQM2022GB |
---|---|---|---|---|---|---|---|
Δξ | 最大值 | 15.23 | 12.36 | 14.51 | 14.50 | 12.30 | 13.38 |
最小值 | -16.99 | -15.02 | -15.48 | -15.55 | -14.27 | -14.16 | |
平均值 | 0.19 | 0.21 | 0.25 | 0.26 | 0.30 | 0.29 | |
标准差 | 2.38 | 2.19 | 2.29 | 2.26 | 2.12 | 2.05 | |
Δη | 最大值 | 27.15 | 28.04 | 26.14 | 26.62 | 26.94 | 27.29 |
最小值 | -14.67 | -14.75 | -16.67 | -16.66 | -16.90 | -16.84 | |
平均值 | -0.13 | -0.17 | -0.16 | -0.16 | -0.20 | -0.19 | |
标准差 | 2.37 | 2.26 | 2.23 | 2.22 | 2.12 | 2.11 |
[1] | 刘晓刚, 庞振兴, 吴娟. 联合不同类型重力测量数据确定地球重力场模型的迭代法[J]. 地球物理学进展, 2012, 27(6): 2342-2347. |
LIU Xiaogang, PANG Zhenxing, WU Juan. Earth's gravitational field model determination from different types of gravimetric data based on iteration method[J]. Progress in Geophysics, 2012, 27(6): 2342-2347. | |
[2] | 刘晓刚, 闫志闯, 孙文, 等. 确定地球重力场模型的最小二乘配置法与调和分析法的精度评析[J]. 地球物理学进展, 2014, 29(1): 46-50. |
LIU Xiaogang, YAN Zhichuang, SUN Wen, et al. Precision evaluation and analysis of least squares collocation method and spherical harmonic analysis method in the determination of the Earth's gravity field model[J]. Progress in Geophysics, 2014, 29(1): 46-50. | |
[3] | LIU Xiaogang, WU Xiaoping. Construction of Earth's gravitational field model from CHAMP, GRACE and GOCE data[J]. Geodesy and Geodynamics, 2015, 6(4): 292-298. |
[4] | 刘晓刚, 常宜峰, 孙文, 等. 利用谱组合法实现GOCE卫星的SST和SGG数据融合处理[J]. 地球科学, 2017, 42(3): 471-478. |
LIU Xiaogang, CHANG Yifeng, SUN Wen, et al. Syncretic processing of GOCE satellite's SST and SGG data based on spectral combination method[J]. Earth Science, 2017, 42(3): 471-478. | |
[5] | 石磐. 利用局部重力数据改进重力场模型[J]. 测绘学报, 1994, 23(4): 276-281. |
SHI Pan. On the improvement of gravity field model using regional gravity data[J]. Acta Geodaetica et Cartographica Sinica, 1994, 23(4): 276-281. | |
[6] | 夏哲仁, 林丽, 石磐. 360阶地球重力场模型DQM94A及其精度分析[J]. 地球物理学报, 1995, 38(6): 788-795. |
XIA Zheren, LIN Li, SHI Pan. A new Earth's gravity field model DQM94A and its precision estimation[J]. Chinese Journal of Geophysics, 1995, 38(6): 788-795. | |
[7] | 石磐, 夏哲仁, 孙中苗, 等. 高分辨率地球重力场模型DQM99[J]. 中国工程科学, 1999, 1(3): 51-55. |
SHI Pan, XIA Zheren, SUN Zhongmiao, et al. High resolution Earth's gravity field models DQM99[J]. Engineering Science, 1999, 1(3): 51-55. | |
[8] | 夏哲仁, 石磐, 李迎春. 高分辨率区域重力场模型DQM2000[J]. 武汉大学学报(信息科学版), 2003, 28(S1): 124-128. |
XIA Zheren, SHI Pan, LI Yingchun. A new series of high resolution Earth's gravity field models DQM2000[J]. Geomatics and Information Science of Wuhan University, 2003, 28(S1): 124-128. | |
[9] | 宁津生, 邱卫根, 陶本藻. 地球重力场模型理论[M]. 武汉: 武汉测绘科技大学出版社, 1990. |
NING Jinsheng, QIU Weigen, TAO Benzao. The theory of Earth's gravity field model[M]. Wuhan: Press of Wuhan Technical University of Surveying and Mapping, 1990. | |
[10] | 宁津生, 李建成, 晁定波, 等. WDM94 360阶地球重力场模型研究[J]. 武汉测绘科技大学学报, 1994, 19(4): 283-291. |
NING Jinsheng, LI Jiancheng, CHAO Dingbo, et al. The research of the Earth's gravity field model WDM94 complete to degree 360[J]. Journal of Wuhan Technical University of Surveying and Mapping, 1994, 19(4): 283-291. | |
[11] | 陆洋, 许厚泽. 720阶高分辨率重力场模型IGG97L研究[J]. 地壳形变与地震, 1998, 18(增刊): 1-7. |
LU Yang, XU Houze. The research of high-resolution gravity field model IGG97L complete to degree 720[J]. Journal of Geodesy and Geodynamics, 1998, 18(S): 1-7. | |
[12] | 梁磊, 于锦海, 朱永超, 等. 顾及非线性改正的动力学方法反演GRACE时变重力场模型[J]. 地球物理学报, 2019, 62(9): 3259-3268. |
LIANG Lei, YU Jinhai, ZHU Yongchao, et al. Recovered GRACE time-variable gravity field based on dynamic approach with the non-linear corrections[J]. Chinese Journal of Geophysics, 2019, 62(9): 3259-3268. | |
[13] | 陈鑑华, 张兴福, 陈秋杰, 等. 融合GOCE和GRACE卫星数据的无约束重力场模型Tongji-GOGR2019S[J]. 地球物理学报, 2020, 63(9): 3251-3262. |
CHEN Jianhua, ZHANG Xingfu, CHEN Qiujie, et al. Unconstrained gravity field model Tongji-GOGR2019S derived from GOCE and GRACE data[J]. Chinese Journal of Geophysics, 2020, 63(9): 3251-3262. | |
[14] | 王正涛, 李建成, 姜卫平, 等. 基于GRACE卫星重力数据确定地球重力场模型WHU-GM-05[J]. 地球物理学报, 2008, 51(5): 1364-1371. |
WANG Zhengtao, LI Jiancheng, JIANG Weiping, et al. Determination of Earth gravity field model WHU-GM-05 using GRACE gravity data[J]. Chinese Journal of Geophysics, 2008, 51(5): 1364-1371. | |
[15] | 罗志才, 周浩, 李琼, 等. 基于GRACE KBRR数据的动力积分法反演时变重力场模型[J]. 地球物理学报, 2016, 59(6): 1994-2005. |
LUO Zhicai, ZHOU Hao, LI Qiong, et al. A new time-variable gravity field model recovered by dynamic integral approach on the basis of GRACE KBRR data alone[J]. Chinese Journal of Geophysics, 2016, 59(6): 1994-2005. | |
[16] | 赵永奇, 李建成, 徐新禹, 等. 利用GOCE和GRACE卫星观测数据确定静态重力场模型[J]. 地球物理学报, 2023, 66(6): 2322-2336. |
ZHAO Yongqi, LI Jiancheng, XU Xinyu, et al. Determination of static gravity field model by using satellite data of GOCE and GRACE[J]. Chinese Journal of Geophysics, 2023, 66(6): 2322-2336. | |
[17] | 王正涛, 党亚民, 晁定波. 超高阶地球重力位模型确定的理论与方法[M]. 北京: 测绘出版社, 2011. |
WANG Zhengtao, DANG Yamin, CHAO Dingbo. Theory and methodology of ultra-high-degree geopotential model determination[M]. Beijing: Surveying and Mapping Press, 2011. | |
[18] | 梁伟, 徐新禹, 李建成, 等. 联合EGM2008模型重力异常和GOCE观测数据构建超高阶地球重力场模型SGG-UGM-1[J]. 测绘学报, 2018, 47(4): 425-434. DOI: 10.11947/j.AGCS.2018.20170269. |
LIANG Wei, XU Xinyu, LI Jiancheng, et al. The determination of an ultra-high gravity field model SGG-UGM-1 by combining EGM2008 gravity anomaly and GOCE observation data[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(4): 425-434. DOI: 10.11947/j.AGCS.2018.20170269. | |
[19] | LIANG Wei, LI Jiancheng, XU Xinyu, et al. A high-resolution Earth's gravity field model SGG-UGM-2 from GOCE, GRACE, satellite altimetry, and EGM2008[J]. Engineering, 2020, 6(8): 860-878. |
[20] | 刘晓刚, 吴晓平, 田颜锋, 等. DQM2000d、UGM05和EGM2008地球重力场模型精度比较[J]. 测绘通报, 2010(2): 8-10. |
LIU Xiaogang, WU Xiaoping, TIAN Yanfeng, et al. Precision comparison of the Earth gravity field models of DQM2000d, UGM05 and EGM2008[J]. Bulletin of Surveying and Mapping, 2010(2): 8-10. | |
[21] | 李新星. 确定地球重力场的六边形网格剖分方法研究[D]. 武汉: 武汉大学, 2021. |
LI Xinxing. Research on hexagonal grid division method for determining the Earth's gravity field[D]. Wuhan: Wuhan University, 2021. | |
[22] | PAVLIS N K, HOLMES S A, KENYON S C, et al. The development and evaluation of the Earth gravitational model 2008 (EGM2008)[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B4): B04406. |
[23] | FÖRSTE C, BRUINSMA S L, ABRIKOSOV O, et al. EIGEN-6C4 the latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse[EB/OL]. [2023-10-09].]http://doi.org/10.5880/icgem.2015.1. |
[24] | JEKELI C. The downward continuation to the Earth's surface of truncated spherical and ellipsoidal harmonic series of the gravity and height anomalies[D]. Columbus: The Ohio State University, 1981. |
[25] | JEKELI C. The exact transformation between ellipsoidal and spherical harmonic expansions[J]. Manuscr Geod, 1988, 13(2): 106-113. |
[26] | COLOMBO O L. Numerical methods for harmonic analysis on the sphere[R]. Columbus: The Ohio State University, 1981. |
[27] | HEISKANEN W A, MORITZ H. Physical geodesy[M]. San Francisco: W. H. Freeman, 1967. |
[28] | MORITZ H. Advanced physical geodesy[M]. Karlsruhe: Wichmann, 1980. |
[29] | PAVLIS N K. Modeling and estimation of a low degree geopotential model from terrestrial gravity data[R]. Columbus: The Ohio State University, 1988. |
[30] | REIGBER C. Gravity field recovery from satellite tracking data[C]//Proceedings of 1989 Theory of Satellite Geodesy and Gravity Field Determination. Berlin: Springer-verlag, 1989: 197-234. |
[31] | 刘晓刚. GOCE卫星测量恢复地球重力场模型的理论与方法[D]. 郑州: 信息工程大学, 2011. |
LIU Xiaogang. Theory and methods of the Earth's gravity field model recovery from GOCE data[D]. Zhengzhou: Information Engineering University, 2011. | |
[32] | 赵亚平. 重力数据粗差探测与剔除方法的研究[J]. 测绘与空间地理信息, 2013, 36(7): 208-210. |
ZHAO Yaping. Study on the outlier detection of gravity data[J]. Geomatics & Spatial Information Technology, 2013, 36(7): 208-210. | |
[33] | 余春平, 王强. 基于MapX控件技术的自动化重力粗差探测[J]. 测绘与空间地理信息, 2017, 40(6): 199-201, 209. |
YU Chunping, WANG Qiang. Automatic gross error detection for gravity based on MapX[J]. Geomatics & Spatial Information Technology, 2017, 40(6): 199-201, 209. | |
[34] | 章传银, 郭春喜, 陈俊勇, 等. EGM 2008地球重力场模型在中国大陆适用性分析[J]. 测绘学报, 2009, 38(4): 283-289. |
ZHANG Chuanyin, GUO Chunxi, CHEN Junyong, et al. EGM2008 and its application analysis in Chinese mainland[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(4): 283-289. | |
[35] | 赵德军, 张敏利, 王强, 等. EIGEN-6C2重力场模型在中国大陆的精度分析[J]. 大地测量与地球动力学, 2014, 34(5): 21-24. |
ZHAO Dejun, ZHANG Minli, WANG Qiang, et al. Accuracy analyses of EIGEN-6C2 geopotential model in China mainland[J]. Journal of Geodesy and Geodynamics, 2014, 34(5): 21-24. |
[1] | 安邦, 于瑶瑶, 徐焕, 于锦海, 田彧玮. 移去-恢复法在基于重力异常的海底地形解析迭代算法中的应用[J]. 测绘学报, 2024, 53(8): 1517-1530. |
[2] | 张展鹏, 李新星, 刘长建, 范昊鹏, 裴宪勇. 基于ico_HEALPix网格的超高阶地球重力场建模方法[J]. 测绘学报, 2024, 53(8): 1531-1539. |
[3] | 孙中苗, 翟振和, 管斌, 阮仁桂, 黄令勇. 双星跟飞测高卫星在轨初步验证[J]. 测绘学报, 2024, 53(2): 207-216. |
[4] | 李真, 郭金运, 孙中苗, 贾永君, 黄令勇, 孙和平. 基于ICESat-2多波束激光测高数据的全球海洋重力异常反演分析[J]. 测绘学报, 2024, 53(2): 252-262. |
[5] | 刘焕玲, 杨蔚然, 张放, 文汉江, 胡敏章, 蒋涛, 蔺文奇, 黎晨曦. 海域重力异常模型的多尺度分析[J]. 测绘学报, 2024, 53(2): 274-285. |
[6] | 詹银虎, 张超, 李飞战, 骆亚波, 米科峰, 张旭, 张志峰. 基于图像全站仪的天文大地垂线偏差测量及其精度分析[J]. 测绘学报, 2023, 52(2): 175-182. |
[7] | 范雕, 李姗姗, 冯进凯, 黄炎, 范昊鹏, 张金辉, 李新星. 基于最小二乘配置的陌生海域海底地形反演方法[J]. 测绘学报, 2023, 52(12): 2039-2053. |
[8] | 郭金运, 金鑫, 边少锋, 常晓涛. 垂线偏差测量的固体潮和海潮改正[J]. 测绘学报, 2022, 51(7): 1215-1224. |
[9] | 魏子卿. 第二大地边值问题引论[J]. 测绘学报, 2022, 51(6): 797-803. |
[10] | 董杰, 张泽宇, 文汉江, 孙文科. 超导重力数据检测到的2011年日本东北大地震(Mw 9.0)震前重力异常及同震重力变化[J]. 测绘学报, 2022, 51(1): 63-70. |
[11] | 范雕, 李姗姗, 欧阳永忠, 孟书宇, 陈成, 邢志斌, 张驰. 顾及海底地形非线性项的最小二乘配置反演方法[J]. 测绘学报, 2021, 50(7): 953-971. |
[12] | 马小辉, 孙中苗, 张志斌, 张阿丽, 袁野, 孙正雄, 王宏. 利用射电天线轴线信息测定VLBI站点垂线偏差[J]. 测绘学报, 2021, 50(3): 315-323. |
[13] | 章传银, 马旭, 章磊, 丁剑. 基于GNSS水准和重力场误差特性的大地水准面精度评估方法[J]. 测绘学报, 2021, 50(1): 12-17. |
[14] | 胡敏章, 张胜军, 金涛勇, 文汉江, 褚永海, 姜卫平, 李建成. 新一代全球海底地形模型BAT_WHU2020[J]. 测绘学报, 2020, 49(8): 939-954. |
[15] | 张胜军, 李建成, 孔祥雪. 基于Laplace方程的垂线偏差法反演全球海域重力异常[J]. 测绘学报, 2020, 49(4): 452-460. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||