测绘学报 ›› 2025, Vol. 54 ›› Issue (10): 1798-1811.doi: 10.11947/j.AGCS.2025.20250189

• 大地测量学与导航 • 上一篇    下一篇

ChiGaM卫星静态重力场模型构建与分析

谭勖立1(), 李姗姗1(), 黄志勇2, 潘宗鹏2,3, 范雕1, 万宏发1, 裴宪勇1, 徐振邦1   

  1. 1.信息工程大学地理空间信息学院,河南 郑州 450001
    2.智能空间信息国家级重点实验室,陕西 西安 710054
    3.西安测绘研究所,陕西 西安 710054
  • 收稿日期:2025-04-29 修回日期:2025-10-15 出版日期:2025-11-14 发布日期:2025-11-14
  • 通讯作者: 李姗姗 E-mail:txl101088@163.com;zzy_lili@sina.com
  • 作者简介:谭勖立(1996—),男,博士生,研究方向为卫星重力测量。E-mail:txl101088@163.com
  • 基金资助:
    国家重点研发计划(2024YFC3212200)

Construction and analysis of the static gravity field model based on ChiGaM satellite

Xuli TAN1(), Shanshan LI1(), Zhiyong HUANG2, Zongpeng PAN2,3, Diao FAN1, Hongfa WAN1, Xianyong PEI1, Zhenbang XU1   

  1. 1.School of Geospatial Information, University of Information and Engineering, Zhengzhou 450001, China
    2.National Key Laboratory of Intelligent Spatial Information, Xi'an 710054, China
    3.Xi'an Research Institute of Surveying and Mapping, Xi'an 710054, China
  • Received:2025-04-29 Revised:2025-10-15 Online:2025-11-14 Published:2025-11-14
  • Contact: Shanshan LI E-mail:txl101088@163.com;zzy_lili@sina.com
  • About author:TAN Xuli (1996—), male, PhD candidate, majors in satellite gravimetry. E-mail: txl101088@163.com
  • Supported by:
    The National Key Research and Development Program of China(2024YFC3212200)

摘要:

中国重力测量计划ChiGaM(Chinese gravimetry augment and mass change exploring mission)的成功实施和持续运行,为实现独立自主恢复高精度地球重力场中长波信号提供了可能。本文研究了适用于ChiGaM卫星的高精度静态重力场模型构建方法,相较于传统动力学法反演过程:①估计了分段常加速度参数,选定了适用于ChiGaM卫星的参数先验方差;②采用PPS(pure predetermine strategy)策略估计KBR(K-band ranging)经验参数并考虑至3-CPR(cycle per revolution)项;③引入了抗差估计和经验剔除法,提高了模型反演精度。处理了卫星2022年3月至2024年5月间数据,构建了150阶静态重力场模型。为提高精度评估结果的可信度,引入RTM(residual terrain model)技术与超高阶重力场模型对地面、海洋重力数据不同频段信号进行分离。通过与频段信号分离后的地面和海洋重力数据对比,以及与GRACE(gravity recovery and climate experiment)卫星静态重力场模型横向对比,评估了所构建静态重力场模型精度。结果表明,本文方法可实现基于ChiGaM卫星的高精度静态重力场模型构建,同时验证了该卫星获取地球重力场中长波信号的能力。

关键词: 卫星重力测量, 静态重力场模型, ChiGaM卫星, 动力学法, RTM技术

Abstract:

The successful implementation and continuous operation of China's ChiGaM (Chinese gravimetry augment and mass change exploring mission) have made it possible to independently and autonomously recover medium-to-long wavelength signals of the Earth's gravity field with high accuracy. This paper investigates a method for recovering a high-precision static gravity field model based on ChiGaM satellite data. Compared with traditional dynamic approach, the proposed method includes following improvements: ① Estimation of piecewise constant acceleration parameters and selection of appropriate priori variance of these parameters for ChiGaM satellite. ② Application of the pure predetermine strategy (PPS) to estimate K-band ranging (KBR) empirical parameters up to the 3-cycle per revolution (3-CPR) terms. ③ Incorporation of robust estimation and empirical data elimination techniques to enhance the inversion accuracy. Using data collected from March 2022 to May 2024, a 150-degree static gravity field model was developed. To improve the reliability of accuracy evaluation, residual terrain model (RTM) technology and ultra-high-degree gravity field models were employed to separate signals, in different frequency bands, from terrestrial and marine gravity data. The accuracy of the constructed static gravity field model was assessed through comparisons with the frequency-separated terrestrial and marine gravity data, as well as through cross-comparison with the GRACE (gravity recovery and climate experiment) static gravity field models. The results demonstrate that the proposed method enables the construction of a high-precision static gravity field model using ChiGaM satellite data, further validating the satellite's capability to capture medium-to-long wavelength signals of the Earth's gravity field.

Key words: satellite gravimetry, static gravity field model, ChiGaM satellite, dynamic approach, RTM technique

中图分类号: