| [1] |
许厚泽, 陆洋, 钟敏, 等. 卫星重力测量及其在地球物理环境变化监测中的应用[J]. 中国科学:地球科学, 2012, 42(6): 843-853.
|
|
XU Houze, LU Yang, ZHONG Min, et al. Satellite gravimetry and its application in monitoring the change of geophysical environment[J]. Scientia Sinica (Terrae), 2012, 42(6): 843-853.
|
| [2] |
宁津生, 王正涛, 超能芳. 国际新一代卫星重力探测计划研究现状与进展[J]. 武汉大学学报(信息科学版), 2016, 41(1): 1-8.
|
|
NING Jinsheng, WANG Zhengtao, CHAO Nengfang. Research status and progress in international next-generation satellite gravity measurement missions[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 1-8.
|
| [3] |
宁津生. 卫星重力探测技术与地球重力场研究[J]. 大地测量与地球动力学, 2002, 22(1): 1-5.
|
|
NING Jinsheng. The satellite gravity surveying technology and research of Earth's gravity field[J]. Crustal Deformation and Earthquake, 2002, 22(1): 1-5.
|
| [4] |
宁津生. 跟踪世界发展动态 致力地球重力场研究[J]. 武汉大学学报(信息科学版), 2001, 26(6): 471-474, 486.
|
|
NING Jinsheng. Following the developments of the world, devoting to the study on the Earth gravity field[J]. Editoral Board of Geomatics and Information Science of Wuhan University, 2001, 26(6): 471-474, 486.
|
| [5] |
郑伟, 许厚泽, 钟敏, 等. 地球重力场模型研究进展和现状[J]. 大地测量与地球动力学, 2010, 30(4): 83-91.
|
|
ZHENG Wei, XU Houze, ZHONG Min, et al. Progress and present status of research on Earth's gravitational field models[J]. Journal of Geodesy and Geodynamics, 2010, 30(4): 83-91.
|
| [6] |
冯进凯, 王庆宾, 黄佳喜, 等. 多个超高阶重力场模型精度分析[J]. 测绘科学技术学报, 2017, 34(4): 358-363.
|
|
FENG Jinkai, WANG Qingbin, HUANG Jiaxi, et al. The accuracy analysis of multiple ultra-high-degree gravity field models[J]. Journal of Geomatics Science and Technology, 2017, 34(4): 358-363.
|
| [7] |
罗志才, 钟波, 周浩, 等. 利用卫星重力测量确定地球重力场模型的进展[J]. 武汉大学学报(信息科学版), 2022, 47(10): 1713-1727.
|
|
LUO Zhicai, ZHONG Bo, ZHOU Hao, et al. Progress in determining the Earth's gravity field model by satellite gravimetry[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1713-1727.
|
| [8] |
ZHOU Hao, LUO Zhicai, ZHOU Zebing, et al. HUST-Grace2016s: a new GRACE static gravity field model derived from a modified dynamic approach over a 13-year observation period[J]. Advances in Space Research, 2017, 60(3): 597-611.
|
| [9] |
CHEN Qiujie, SHEN Yunzhong, FRANCIS O, et al. Tongji-Grace02s and Tongji-Grace02k: high-precision static GRACE-only global earth's gravity field models derived by refined data processing strategies[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(7): 6111-6137.
|
| [10] |
KVAS A, BROCKMANN J M, KRAUSS S, et al. GOCO06s-a satellite-only global gravity field model[J]. Earth System Science Data, 2021, 13(1): 99-118.
|
| [11] |
SHAKO R, FÖRSTE C, ABRIKOSOV O, et al. EIGEN-6C: a high-resolution global gravity combination model including GOCE data[M]//Observation of the System Earth from Space-CHAMP, GRACE, GOCE and future missions. Berlin: Springer Berlin Heidelberg, 2013: 155-161.
|
| [12] |
ZINGERLE P, PAIL R, GRUBER T, et al. The combined global gravity field model XGM2019e[J]. Journal of Geodesy, 2020, 94(7): 66.
|
| [13] |
肖云, 杨元喜, 潘宗鹏, 等. 中国卫星跟踪卫星重力测量系统性能与应用[J]. 科学通报, 2023, 68(20): 2655-2664.
|
|
XIAO Yun, YANG Yuanxi, PAN Zongpeng, et al. Performance and application of the Chinese satellite-to-satellite tracking gravimetry system[J]. Chinese Science Bulletin, 2023, 68(20): 2655-2664.
|
| [14] |
XIAO Yun, YANG Yuanxi, PAN Zongpeng, et al. Chinese gravimetry augment and mass change exploring mission status and future[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(3).
|
| [15] |
杨元喜, 王建荣, 楼良盛, 等. 航天测绘发展现状与展望[J]. 中国空间科学技术, 2022, 42(3): 1-9.
|
|
YANG Yuanxi, WANG Jianrong, LOU Liangsheng, et al. Development status and prospect of satellite-based surveying[J]. Chinese Space Science and Technology, 2022, 42(3): 1-9.
|
| [16] |
ZHOU Hao, LUO Zhicai, ZHOU Zebing, et al. Impact of different kinematic empirical parameters processing strategies on temporal gravity field model determination[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(11): 10, 252-10, 276.
|
| [17] |
游为. 应用低轨卫星数据反演地球重力场模型的理论和方法[D]. 成都: 西南交通大学, 2011.
|
|
YOU Wei. Theory and methodology of Earth's gravitational field model recovery by Leo data[D]. Chengdu: Southwest Jiaotong University, 2011.
|
| [18] |
DARBEHESHTI N, LASSER M, MEYER U, et al. AIUB-GRACE gravity field solutions for G3P: processing strategies and instrument parameterization[J]. Earth System Science Data, 2024, 16(3): 1589-1599.
|
| [19] |
WÖSKE F, KATO T, RIEVERS B, et al. GRACE accelerometer calibration by high precision non-gravitational force modeling[J]. Advances in Space Research, 2019, 63(3): 1318-1335.
|
| [20] |
ZHANG Jiahui, YOU Wei, YU Biao, et al. GRACE-FO accelerometer performance analysis and calibration[J]. GPS Solutions, 2023, 27(4): 158.
|
| [21] |
BEUTLER G, JÄGGI A, MERVART L, et al. The celestial mechanics approach: theoretical foundations[J]. Journal of Geodesy, 2010, 84(10): 605-624.
|
| [22] |
BEUTLER G, JÄGGI A, MERVART L, et al. The celestial mechanics approach: application to data of the GRACE mission[J]. Journal of Geodesy, 2010, 84(11): 661-681.
|
| [23] |
MEYER U, JÄGGI A, JEAN Y, et al. AIUB-RL02: an improved time-series of monthly gravity fields from GRACE data[J]. Geophysical Journal International, 2016, 205(2): 1196-1207.
|
| [24] |
NIE Yufeng, SHEN Yunzhong, PAIL R, et al. Revisiting force model error modeling in GRACE gravity field recovery[J]. Surveys in Geophysics, 2022, 43(4): 1169-1199.
|
| [25] |
ZHONG Bo, LI Qiong, CHEN Jianli, et al. Improved estimation of regional surface mass variations from GRACE intersatellite geopotential differences using a priori constraints[J]. Remote Sensing, 2020, 12(16): 2553.
|
| [26] |
LUTHCKE S B, ROWLANDS D D, LEMOINE F G, et al. Monthly spherical harmonic gravity field solutions determined from GRACE inter-satellite range-rate data alone[J]. Geophysical Research Letters, 2006, 33(2): 356-360.
|
| [27] |
SHEN Zhanglin, CHEN Qiujie, SHEN Yunzhong. An improved acceleration approach by utilizing K-band range rate observations[J]. Remote Sensing, 2023, 15(21): 5260.
|
| [28] |
YANG Y, CHENG M K, SHUM C K, et al. Robust estimation of systematic errors of satellite laser range[J]. Journal of Geodesy, 1999, 73(7): 345-349.
|
| [29] |
王培杰, 陈小斌, 韩鹏, 等. 基于稳健估计、数据筛选和Rhoplus约束的大地电磁数据处理方法[J]. 地球物理学报, 2024, 67(11): 4325-4342.
|
|
WANG Peijie, CHEN Xiaobin, HAN Peng, et al. Strong interference magnetotelluric data processing method based on robust estimation, data screening and Rhoplus constraint[J]. Chinese Journal of Geophysics, 2024, 67(11): 4325-4342.
|
| [30] |
孙悦, 薛树强, 韩保民, 等. 邻近海底基准站坐标时序联合处理模型[J]. 测绘学报, 2023, 52(11): 1835-1843. DOI: .
doi: 10.11947/j.AGCS.2023.20220203
|
|
SUN Yue, XUE Shuqiang, HAN Baomin, et al. Multi-station joint processing model for seafloor geodetic coordinate time series[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(11): 1835-1843. DOI: .
doi: 10.11947/j.AGCS.2023.20220203
|
| [31] |
LYARD F H, ALLAIN D J, CANCET M, et al. FES2014 global ocean tide atlas: design and performance[J]. Ocean Science, 2021, 17(3): 615-649.
|
| [32] |
PETIT G, LUZUM B. IERS conventions (2010)[J]. IERS Technical Note, 2010, 36. DOI: .
doi: http://dx.doi.org/
|
| [33] |
FOLKNER W, WILLIAMS J, BOGGS D, et al. The planetary and lunar ephemerides DE430 and DE431[R]. [S.l.]: Interplanetary network progress report, 2014, 196(1): 42-196.
|
| [34] |
DESAI S D. Observing the pole tide with satellite altimetry[J]. Journal of Geophysical Research: Oceans, 2002, 107(C11): 7-1-7-13.
|
| [35] |
DOBSLAW H, BERGMANN-WOLF I, DILL R, et al. A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06Free[J]. Geophysical Journal International, 2017, 211(1): 263-269.
|
| [36] |
HIRT C, GRUBER T, FEATHERSTONE W E. Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008 quasigeoid heights[J]. Journal of Geodesy, 2011, 85(10): 723-740.
|
| [37] |
HIRT C, YANG Meng, KUHN M, et al. SRTM2gravity: an ultrahigh resolution global model of gravimetric terrain corrections[J]. Geophysical Research Letters, 2019, 46(9): 4618-4627.
|
| [38] |
KVAS A, BEHZADPOUR S, ELLMER M, et al. ITSG-Grace2018: overview and evaluation of a new GRACE-only gravity field time series[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(8): 9332-9344.
|
| [39] |
AKYILMAZ O, USTUN A, AYDIN C, et al. ITU_GRACE16: the global gravity field model including GRACE data up to degree and order 180 of ITU and other collaborating institutions[EB/OL]. [2025-01-25]. DOI: http://doi.org/10.5880/icgem.2016.006.
|
| [40] |
MAYER-GURR T, EICKER A, ILK K H. ITG-Grace02s: a GRACE gravity field derived from range measurements of short arcs[C]//Proceedings of the 1st International Symposium of the International Gravity Field Service. Ankara: Command of Mapp, 2007.
|
| [41] |
RIES J, BETTADPUR R, EANES Z, et al. The development and evaluation of the global gravity Model GGM05[R]. Texas: Center for Space Research, 2016. DOI: .
doi: http://dx.doi.org/10.26153/tsw/1461
|
| [42] |
TAPLEY B, RIES J, BETTADPUR S, et al. GGM02-an improved Earth gravity field model from GRACE[J]. Journal of Geodesy, 2005, 79(8): 467-478.
|
| [43] |
KVAS A, BROCKMANN J M, KRAUSS S, et al. GOCO06s—a satellite-only global gravity field model[J]. Earth System Science Data, 2021, 13(1): 99-118.
|
| [44] |
ANDERSEN O B, KNUDSEN P. The DTU17 global marine gravity field: first validation results[M]//Fiducial Reference Measurements for Altimetry. Cham: Springer International Publishing, 2019: 83-87.
|
| [45] |
GUO Jinyun, WEI Xuyang, LI Zhen, et al. SDUST2023GRA_MSS: the new global marine gravity anomaly model determined from mean sea surface model[J]. Scientific Data, 2025, 12(1): 108.
|