摘要: 本文在阐述Tikhonov正则化方法基本原理的基础上,给出了四类可用于重力场解算的正则化矩阵(零次、一次、二次和Kaula),以及用于确定正则化参数的L曲线法和GCV方法的数学模型。基于SA方法利用模拟数据分析讨论了零次、一次以及Kaula正则化矩阵应用于GOCE全球重力场模型确定的有效性,并由Kaula正则化矩阵分析了L曲线法和GCV方法确定正则化参数的可行性。数值结果表明三类正则化矩阵获得的最优解(以大地水准面MSE最小为准则确定)的精度水平相近,关键在于相应正则化参数的确定,数值结果同时说明了GCV方法和L曲线法可用于确定正则化参数,且前者较后者具有更好的稳定性。