
›› 2013, Vol. 42 ›› Issue (5): 722-728.
刘殿锋,刘耀林
收稿日期:2012-05-14
修回日期:2013-01-06
出版日期:2013-10-20
发布日期:2014-01-23
通讯作者:
刘殿锋
E-mail:liudianfeng@whu.edu.cn
基金资助:
Received:2012-05-14
Revised:2013-01-06
Online:2013-10-20
Published:2014-01-23
摘要: 提出一种基于多目标微观邻域粒子群的土壤空间优化抽样方法。方法面向土壤空间调查的多目标特征,构建了基于最小克里金方差(MKV)和极大熵准则(ME)的粒子群多目标适应度函数,设计了最小样本量限制、样点可达性、采样成本限制和最小空间关联性四类粒子微观邻域操作策略,能高效协调土壤空间抽样精度、代表性、成本、样本量与样点布局等多目标冲突。实验结果表明,相比单目标粒子群算法和模拟退火算法,该方法的目标冲突协同能力强、收敛效率高,所设计抽样方案最优,为土壤质量精确调查与高效监测提供了技术支持。
中图分类号:
刘殿锋 刘耀林. 多目标微观邻域粒子群算法及其在土壤空间优化抽样中的应用[J]. , 2013, 42(5): 722-728.
| [1]HOU Jing-ru, YIN Zhen-nan, LI Wei-ming, et al..[J].Application of Geostatistics [M]. Beijing: Geological publishing House,1998,:- [2]STEIN A, ETTEMA A C.An Overview of Spatial Sampling Procedures and Experimental Design of Spatial Studies for Ecosystem Comparisons[J].Agriculture, Ecosystems & Environment,2003,94(1):31-47 [3]LI Lian-fa, WANG Jin-feng.Spatial Sampling Models for Geographical Data[J].Progress in Nature Science,2002,12(05):545-548 [4]VAN GROENIGEN J W, STEIN A, ZUURBIER R.Optimisation of Environmental Sampling using Interactive GIS[J].Soil Technology,1997,10:83-97 [5]JIANG Cheng-cheng, WANG Jin-feng, CAO Zhi-dong.A Review of Geo-Spatial Sampling Theory[J].ACTA GEOGRAPHICA SINICA,2009,64(03):368-380 [6]CAO Zhi-dong, WANG Jin-feng, LI Lian-fa, et al.Strata Efficiency and Optimization strategy of Stratified Sampling on Spatial Population[J].Progress in Geography,2008,27(03):152-160 [7]VAN GROENIGEN, J W, SIDERIUS W, STEIN A.Constrained Optimisation of Soil Sampling for Minimisation of the Kriging Variance[J].Geoderma,1999,87(3-4):239-259 [8]MINASNY B, MCBRATNEY A B, WALVOORT D J J.The Variance Quadtree Algorithm: Use for Spatial Sampling Design[J].Computers & Geosciences,2007,33(3):383-392 [9]ZHANG Jin-xiong, GOODCHILD M F.Towards Progressive Strategies for Spatial Sampling in the Field[J].Geomatics and Information Science of Wuhan University,2008,33(05):441-445 [10]WANG Jin-feng.[J].JIANG Cheng-cheng, LI Lian-fa, et al. Spatial Sampling and Inference Technique [M]. Beijing: Science Press,2009,:- [11] HAINING R. Spatial Data Analysis Theory and Practice [M]. Wuhan: Cambridge University Press & Wuhan University Press, 2009 [12]KENNEDY J, EBERHART R C. A discrete binary version of the particle swarm algorithm [A]. Systems, Man, and Cybernetics,.[J].IEEE International Conference on Computational Cybernetics and Simulation [C]. Orlando: [s.n.], 1997,1997,4104:- [13]EBERHART R C.[J].KENNEDY J. A New Optimizer Using Particle Swarm Theory [A]. Proceedings Sixth Symposium on Micro Machine and Human Science [C]. Piscataway: [s.n.,1995,:- [14]SHI Y.[J].EBERHART R C. A Modified Particle Swarm Optimizer [A]. Proceedings of the 1998 IEEE Conference on Evolutionary Computation [C]. AK, Anchorage: [s.n.,1998,:- [15]MALCZEWSKI J.GIS-based Land-use Suitability Analysis: A Critical Overview[J].Progress in Planning,2004,62(1):3-65 [16]FOODY G M.Status of Land Cover Classification Accuracy Assessment[J].Remote Sensing of Environment,2002,80(1):185-201 [17]VRAHATIS M N, PARSOPOULOS K E.Recent Approaches to Global Optimization Problems through Particle Swarm Optimization[J].Natural Computing,2002,1:235-306 [18]KERRY R, OLIVER M A.Average Variograms to Guide Soil Sampling[J].International Journal of Applied Earth Observation and Geoinformation,2004,5(4):307-325 [19]VASAT R, HEUVELINK G B M, BORUVKA L.Sampling Design Optimization for Multivariate Soil Mapping[J].Geoderma,2010,155(3-4):147-153 [20]TSOULOS I G, STAVRAKOUDIS A.Enhancing PSO Methods for Global Optimization[J].Applied Mathematics and Computation,2010,216(10):2988-3001 [21]SIMBAHAN G C, DOBERMANN A.Sampling Optimization based on Secondary Information and its Utilization in Soil Carbon Mapping[J].Geoderma,2006,133(3-4):345-362 |
| [1] | 邱越, 武芳, 翟仁健, 钱海忠, 黄哲琨, 李博. 面向匹配优化的多源建筑物实体级保形空间对齐模型[J]. 测绘学报, 2025, 54(12): 2262-2275. |
| [2] | 张锦彬, 朱军, 党沛, 周宇轩, 杨博文. 现场直播式地理信息服务:基于VR全景的现场实况远程临浸感知[J]. 测绘学报, 2025, 54(12): 2276-2286. |
| [3] | 张岩. 基于街景影像的城市功能区多尺度时空感知方法[J]. 测绘学报, 2025, 54(12): 2289-2289. |
| [4] | 曾进. 城市社会空间的空间大数据量化表达与分析方法:以深圳市为例[J]. 测绘学报, 2025, 54(12): 2292-2292. |
| [5] | 刘少俊. 基于手机信令数据的城市人群活动时空格局分析研究[J]. 测绘学报, 2025, 54(12): 2295-2295. |
| [6] | 吴超, 梁咏翔, 岳瀚, 崔远政, 黄波. 面向计数数据的时空地理加权泊松回归模型[J]. 测绘学报, 2025, 54(11): 2026-2039. |
| [7] | 王小龙, 王卓, 李精忠, 闫浩文. 微地图制图的空间方向关系转译法[J]. 测绘学报, 2025, 54(11): 2040-2051. |
| [8] | 胡鑫, 杨学习, 江一凡, 王宪彬, 丁晨, 谢顾然, 邓敏. 基于多智能体层次化协同的地理事件抽取与时空解析[J]. 测绘学报, 2025, 54(11): 2052-2067. |
| [9] | 李俊, 李朝奎, 黄磊, 冯媛媛. 高速公路广告牌巡检目标跟踪的改进ByteTrack算法[J]. 测绘学报, 2025, 54(11): 2068-2080. |
| [10] | 叶欣宇, 徐胜华, 刘纪平, 陈虹宇, 王琢璐, 李维炼. 基于时空因果推断的下一个兴趣点推荐[J]. 测绘学报, 2025, 54(11): 2081-2096. |
| [11] | 赵学胜, 谢文澜, 孙文彬. 空间格网互操作的研究进展与关键问题[J]. 测绘学报, 2025, 54(10): 1727-1740. |
| [12] | 高凡, 路威, 甘麟露, 章繁, 荣凤娟, 汤士涵. 智能驱动的并行地理计算引擎框架[J]. 测绘学报, 2025, 54(10): 1877-1892. |
| [13] | 吴浩宇, 朱庆, 丁雨淋, 鲍榴, 刘利. 数据模型知识协同驱动的隧道围岩高精度数字孪生建模方法[J]. 测绘学报, 2025, 54(10): 1893-1906. |
| [14] | 郝彧露. 时空数据驱动的城市区域火灾风险评估预测模型及应用[J]. 测绘学报, 2025, 54(10): 1910-1910. |
| [15] | 张付兵, 孙群, 徐青, 马京振, 黄文君, 陈若虚. 随机森林和图神经网络支持下的河系自动分级与选取方法[J]. 测绘学报, 2025, 54(9): 1697-1711. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||