测绘学报 ›› 2015, Vol. 44 ›› Issue (6): 663-669.doi: 10.11947/j.AGCS.2015.20130452

• 摄影测量学与遥感 • 上一篇    下一篇

视频测量影像序列椭圆形人工目标点快速识别和跟踪方法

刘祥磊1,2, 童小华3, 马静4   

  1. 1. 北京建筑大学测绘与城市空间信息学院, 北京 100044;
    2. 现代城市测绘国家测绘地理信息局重点实验室, 北京 100044;
    3. 同济大学测绘与地理信息学院, 上海 200092;
    4. 北京市地质工程勘察院, 北京 100048
  • 收稿日期:2014-04-03 修回日期:2015-03-09 出版日期:2015-06-20 发布日期:2015-07-28
  • 通讯作者: 童小华 E-mail: xhtong@tongji.edu.cn E-mail:xhtong@tongji.edu.cn
  • 作者简介:刘祥磊(1982—),男,博士,研究方向为视频测量建/构筑物模型健康监测。E-mail: liuxianglei@bucea.edu.cn
  • 基金资助:

    现代城市测绘国家测绘地理信息局重点实验室开放课题(20131203NY;20131202NZ);北京建筑大学科学研究基金(00331614022)

A Systemic Algorithm of Elliptical Artificial Targets Identification and Tracking for Image Sequences from Videogrammetry

LIU Xianglei1,2, TONG Xiaohua3, MA Jing4   

  1. 1. School of Geomatics and Urban Information, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;
    2. Key Laboratory for Urban Geomatics of National Administration of Surveying, Mapping and Geoinformation, Beijing 100044, China;
    3. College of Surveying and Geo-informatics, Tongji University, Shanghai 200092, China;
    4. Beijing Institute of Geo-engineering and Exploration, Beijing 100048, China
  • Received:2014-04-03 Revised:2015-03-09 Online:2015-06-20 Published:2015-07-28
  • Supported by:

    Foundation of Key Laboratory for Urban Geomatics of National Administration of Surveying, Mapping and Geoinformation (Nos.20131203NY;20131202NZ);Scientific Research Foundation of Beijing University of Civil Engineering and Architecture (No.00331614022)

摘要:

针对视频测量建筑物健康监测获取海量影像序列数据快速、准确识别和跟踪目标点的需求,提出基于影像块技术的椭圆形目标点识别和跟踪完整算法。该算法采用影像分块技术降低数据处理量,实现椭圆形目标点跟踪,集成数学形态学和椭圆几何属性特征,消除图像块边缘检测的非椭圆边缘信息,实现椭圆轮廓的提取,并采用最小二乘法拟合椭圆中心实现亚像素定位,快速、准确地实现视频测量建筑物健康监测椭圆形目标点的识别与跟踪。试验结果表明该方法获取的椭圆中心点像素坐标的RMS残差优于0.025个像素,且相对于随机Hough变换和模板识别算法,跟踪效率提高5倍以上。

关键词: 视频测量, 影像块, 椭圆识别, 数学形态学, 最小二乘法

Abstract:

In order to satisfy the requirement of identification and tracking the elliptical artificial targets fast and accurately for the image sequences from videogrammetric measurement for structural health monitoring, this paper proposes a systemic algorithm to identify and track the elliptical targets using the image block technique. The proposed method extracts the image block from original images to reduce the amount of data processing for the oval targets tracking. The mathematical morphology and elliptical geometric characteristics are integrated to eliminate the non-elliptical edge information to extract the elliptical contour in the range of image block. At last, the sub-pixel center location for elliptical artificial targets is acquired by the least square algorithm. The experimental results show that RMS error of 0.025 pixel can be achieved by the proposed method, furthermore, compared with the random Hough transform and template recognition algorithm, the tracking efficiency is improved over 5 times.

Key words: videogrammetric measurement, image block, ellipse identification, mathematical morphology, least square algorithm

中图分类号: