测绘学报 ›› 2021, Vol. 50 ›› Issue (6): 749-756.doi: 10.11947/j.AGCS.2021.20210048

• 地理空间认知 • 上一篇    下一篇

地图线状要素眼动识别的朴素贝叶斯方法

董卫华1,2, 王圣凯1,2, 王雪元1,2, 杨天宇1,2   

  1. 1. 北京师范大学地理科学学部, 北京 100875;
    2. 北京师范大学地理空间认知与可视分析实验室, 北京 100875
  • 收稿日期:2021-01-22 修回日期:2021-01-25 发布日期:2021-06-28
  • 通讯作者: 王圣凯 E-mail:wangsk@mail.bnu.edu.cn
  • 作者简介:董卫华(1976—),男,教授,研究方向为地理空间认知、地图可视化。E-mail:dongweihua@bnu.edu.cn
  • 基金资助:
    国家自然科学基金(41871366)

A naive Bayesian method for eye movement recognition of map linear elements

DONG Weihua1,2, WANG Shengkai1,2, WANG Xueyuan1,2, YANG Tianyu1,2   

  1. 1. Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China;
    2. Research Center of Geospatial Cognition and Visual Analytics, Beijing Normal University, Beijing 100875, China
  • Received:2021-01-22 Revised:2021-01-25 Published:2021-06-28
  • Supported by:
    The National Natural Science Foundation of China(No. 41871366)

摘要: 眼动追踪技术在人机交互、用户行为识别、预测等方面得到了广泛应用,但是如何自动识别用户的地图阅读行为,眼动行为仍具有一定的挑战性。本文提出了一种基于朴素贝叶斯分类模型的方法识别用户阅读地图线状要素时的眼动行为。本试验首先通过25名被试者阅读地图过程中的眼动行为进行数据采集,然后提取了250个眼动特征并对其进行离散化处理,采用最小冗余最大相关方法进行特征选择排序。结果显示,当采用信息熵法,特征数量为m=5时分类准确率最大为78.27%;而采用信息差法,特征数量为m=4时分类准确率达到最大值为77.01%。本文提出的基于朴素贝叶斯的方法在准确率方面优于已有研究方法。此外,由于特征数量的减少,大幅提高了算法的执行效率。本文提出的地图阅读行为眼动识别方法,为未来眼控交互式地图研究奠定基础。

关键词: 眼动识别, 地图读图行为, 朴素贝叶斯分类器, 特征选择, 最小冗余最大相关

Abstract: At present, eye tracking technology has been widely used in human-computer interaction, user behavior recognition and prediction, but how to automatically identify user’s eye movement behavior in map reading is still a challenge. This paper proposed a method based on the naive Bayesian classification model to identify the users’ behavior when performing linear feature recognition. We first conducted an eye tracking experiment to acquire users’ eye movement dataset of map reading. Then we extracted and discretized 250 eye movement features involved in the algorithm, and used minimum redundancy maximum relevance algorithm to further select the features. The results show that when the attribute selection method is m=5 using mutual information quotient, the classification accuracy is 78.27%. And when using mutual information difference and m=4, the classification accuracy is 77.01%.We suggested that the proposed method can effectively identify the first elements in the map using eye movement data. This study explores the interaction technology by combining the eye tracking, laying the foundation for the future of designing gaze-controlled interactive map. The proposed method based on naive Bayesian model in this paper is comparable to the existing methods. In addition, the execution efficiency of the model is greatly improved due to the reduction in the number of features. The eye-track recognition algorithm of map reading behavior proposed in this study lays a foundation for future gaze-controlled interactive map research.

Key words: eye movement recognition, map reading behavior, naive Bayesian classifier, feature selection, minimum redundancy maximum relevance

中图分类号: