测绘学报 ›› 2021, Vol. 50 ›› Issue (6): 757-765.doi: 10.11947/j.AGCS.2021.20210046

• 地理空间认知 • 上一篇    下一篇

地图空间形状认知的自编码器深度学习方法

晏雄锋1,2, 艾廷华2, 杨敏2, 郑建滨2   

  1. 1. 同济大学测绘与地理信息学院, 上海 200092;
    2. 武汉大学资源与环境科学学院, 湖北 武汉 430079
  • 收稿日期:2021-01-21 修回日期:2021-02-10 发布日期:2021-06-28
  • 通讯作者: 艾廷华 E-mail:tinghuaai@whu.edu.cn
  • 作者简介:晏雄锋(1990—),男,博士,研究方向为地图制图与深度学习。E-mail:xiongfengyan@tongji.edu.cn
  • 基金资助:
    国家自然科学基金(42001415;42071450);国家重点研发计划(2017YFB0503500)

Shape cognition in map space using deep auto-encoder learning

YAN Xiongfeng1,2, AI Tinghua2, YANG Min2, ZHENG Jianbin2   

  1. 1. College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China;
    2. School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
  • Received:2021-01-21 Revised:2021-02-10 Published:2021-06-28
  • Supported by:
    The National Natural Science Foundation of China (Nos. 42001415;42071450);The National Key Research and Development Program of China (No. 2017YFB0503500)

摘要: 形状是地理空间要素的重要特征,是人们建立空间概念、形成空间认知的重要依据。本文利用深度学习的特征挖掘能力引入自编码学习方法,对二维地图空间中形状边界上多组邻域尺寸下的多个特征进行集成和整合,为空间形状认知的机理和形式化提供支撑。本文以建筑物数据为例,将建筑物形状边界转换为序列数据,并提取其描述特征;随后结合sequence-to-sequence自编码学习模型,对无标签的建筑面要素数据进行学习训练,形成形状认知编码。试验表明,本文方法能够产生符合形状认知、具有相似度计算意义的形状编码,具备对不同建筑物形状的区分能力;同时,在形状检索和匹配等应用场景中,该形状编码能有效地表示建筑物的全局和局部特征,与视觉认知结果一致。

关键词: 空间认知, 形状编码, 深度学习, 自编码器, sequence-to-sequence模型

Abstract: Shape is an important feature of geospatial objects and a pivotal basis for people to establish spatial concepts and form spatial cognition in map space. The study tries to integrate multiple characteristics of the shape outline using deep auto-encoder learning, and provides support for the mechanism and formalization of spatial cognition. By taking the building data as a case, the study first converts the shape outline into a sequence and extracts its descriptive characteristics by considering the local and regional structures, and then learns a shape coding from the unlabeled data using the sequence-to-sequence learning model. Experiments show that the shape cognition in map space achieves a meaningful similarity measure between different shapes by using deep auto-encoder learning. Furthermore, the shape coding can effectively represent the global and local characteristics in the application scenarios such as shape retrieval and shape matching.

Key words: spatial cognition, shape coding, deep learning, auto-encoder, sequence-to-sequence model

中图分类号: