测绘学报 ›› 2022, Vol. 51 ›› Issue (1): 115-126.doi: 10.11947/j.AGCS.2021.20210105

• 影像处理与重建 • 上一篇    下一篇

分区优化混合SfM方法

许彪1, 董友强2,3, 张力1, 孙钰珊1, 刘玉轩1, 查冰4, 韩晓霞1   

  1. 1. 中国测绘科学研究院, 北京 100830;
    2. 北京建筑大学测绘与城市空间信息学院, 北京 100044;
    3. 北京市建筑遗产精细重构与健康监测重点实验室, 北京 100044;
    4. 俄亥俄州立大学工程学院土木环境和大地测量系, 美国 哥伦布 43210
  • 收稿日期:2021-02-28 修回日期:2021-05-24 发布日期:2022-02-15
  • 通讯作者: 董友强 E-mail:dongyouqiang@bucea.edu.cn
  • 作者简介:许彪(1986-),男,博士,助理研究员,研究方向为数字摄影测量与遥感。E-mail:biaoxv@casm.ac.cn
  • 基金资助:
    国家重点研发计划(2017YFB0503000);北京市教委科技计划面上项目(KM202110016005)

A hybrid SfM method based on partition optimization

XU Biao1, DONG Youqiang2,3, ZHANG Li1, SUN Yushan1, LIU Yuxuan1, ZHA Bing4, HAN Xiaoxia1   

  1. 1. Chinese Academy of Surveying & Mapping, Beijing 100830, China;
    2. Beijing University of Civil Engineering and Architecture, Beijing 100044, China;
    3. Beijing Key Laboratory for Architectural Heritage Fine Reconstruction & Health Monitoring, Beijing 100044, China;
    4. Environmental and Geodetic Engineering, Department of Civil, Ohio State University, Columbus, OH 43210, USA
  • Received:2021-02-28 Revised:2021-05-24 Published:2022-02-15
  • Supported by:
    The National Key Research and Development Program of China(No. 2017YFB0503000);The Scientific Research Project of Beijing Educational Committee (No. KM202110016005)

摘要: 针对大规模无序影像稀疏三维重建问题,本文提出一种稳健、高效且易于并行的分区优化的混合式SfM方法。首先,利用SIFT算法进行影像匹配,无须GPS/INS等其他辅助信息,仅利用影像间的匹配结果计算得到的影像关联度完成影像分区。然后,提出一种改进的增量式SfM方法实现每个分区内快速重建,以及提出多项标准自动剔除不可靠分区并将这些分区内影像重新划分至其他分区,实现分区的动态调整。最后,提出一种稳健高精度的分区融合算法,实现相机参数、影像姿态和场景三维信息的准确融合。多组不同规模、不同影像类型以及不同场景的典型数据试验结果表明本文方法对不同数据集具有很好的稳健性,在保持高精度的同时能大大提高重建效率,尤其适用于大规模影像数据集。

关键词: 混合式SfM, 大规模影像, 影像分区, 分区融合

Abstract: Aiming at solving the problem of sparse 3D reconstruction of large-scale unordered images, this paper proposes a robust, efficient, and easy-to-parallel hybrid SfM method based on partition optimization. Firstly, the SIFT algorithm is used for image matching, and image partitioning is completed using image correlation scores calculated from the matching results without other auxiliary information such as GPS/INS. Secondly, an improved incremental SfM method is applied to achieve rapid reconstruction in each partition, and a number of standards are introduced to automatically eliminate the unreliable partitions and re-divide the images in these partitions into other partitions to achieve dynamic adjustment. Finally, a robust and high-precision partition fusion algorithm is proposed to realize accurate fusion of camera parameters, image posture, and 3D information of the scene. The experimental results of multiple challenging data sets of different scales, different image types, and different scenes show that our proposed hybrid SfM method has good robustness to different data sets and dramatically improves efficiency while maintaining high precision,which especially suitable for large-scale image sets.

Key words: hybrid SfM, large-scale image sets, image partition, partition fusion

中图分类号: