测绘学报 ›› 2023, Vol. 52 ›› Issue (1): 51-60.doi: 10.11947/j.AGCS.2023.20200581

• 大地测量学与导航 • 上一篇    下一篇

顾及地表散射贡献与多基线参数线性相关性的PolInSAR植被高反演方法

林东方1,2, 朱建军3, 李志伟3, 付海强3, 梁继1, 周访滨4, 张兵5   

  1. 1. 湖南科技大学测绘遥感信息工程湖南省重点实验室, 湖南 湘潭 411201;
    2. 武汉大学测绘学院, 湖北 武汉 430079;
    3. 中南大学地球科学与信息物理学院, 湖南 长沙 410083;
    4. 长沙理工大学湖南省公路先进建养技术国际科技创新合作基地, 湖南 长沙 410114;
    5. 辽宁工程技术大学测绘与地理科学学院, 辽宁 阜新 123000
  • 收稿日期:2021-12-31 修回日期:2022-11-12 发布日期:2023-02-09
  • 通讯作者: 朱建军 E-mail:zjj@csu.edu.cn
  • 作者简介:林东方(1986—),男,博士,讲师,研究方向为测量数据处理与PolInSAR技术应用。E-mail: lindongfang223@163.com
  • 基金资助:
    国家自然科学基金(42104025); 湖南省自然科学基金创新研究群体(2020JJ1003); 中国博士后科学基金(2021M702509); 湖南省自然资源科技计划(2022-07);地球空间环境与大地测量教育部重点实验室测绘基础研究基金(20-01-04); 湖南省自然科学基金(2021JJ30244; 2022JJ30254);长沙理工大学湖南省公路先进建养技术国际科技创新合作基地开放基金资助项目(kfj190805)

A multi-baseline PolInSAR forest height inversion method taking into account the ground scattering effects and parametric linear

LIN Dongfang1,2, ZHU Jianjun3, LI Zhiwei3, FU Haiqiang3, LIANG Ji1, ZHOU Fangbin4, ZHANG Bing5   

  1. 1. Hunan Provincial Key Laboratory of Geo-Information Engineering in Surveying, Mapping and Remote Sensing, Hunan University of Science and Technology, Xiangtan 411201, China;
    2. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China;
    3. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China;
    4. Hunan International Scientific and Technological Innovation Cooperation Base of Advanced Construction and Maintenance Technology of Highway, Changsha University of Science & Technology, Changsha 410114, China;
    5. School of Geomatics, Liaoning Technical University, Fuxin 123000, China
  • Received:2021-12-31 Revised:2022-11-12 Published:2023-02-09
  • Supported by:
    The National Natural Science Foundation of China (No.42104025);Foundation for Innovative Research Groups of the Natural Science Foundation of Hunan Province (No.2020JJ1003);China Postdoctoral Science Foundation (No.2021M702509);The Natural Resources Sciences and Technology Project of Hunan Province (No.2022-07);Surveying and Mapping Basic Research Foundation of Key Laboratory of Geospace Environment and Geodesy, Ministry of Education (No.20-01-04);The Natural Science Foundation of Hunan Province (Nos. 2021JJ30244;2022JJ30254);Open Fund of Hunan International Scientific and Technological Innovation Cooperation Base of Advanced Construction and Maintenance Technology of Highway (Changsha University of Science & Technology) (No.kfj190805)

摘要: 单基线PolInSAR受观测信息不足影响常假设体散射占优极化方式地体幅度比为零,以实现植被高参数的反演,该假设导致植被高参数反演存在较大偏差。利用多基线观测数据,可补充观测信息实现地体幅度比参数的反演。然而,多基线反演模型引入过多模型参数,造成部分参数存在近似线性相关性,引起反演模型病态,常规算法难以得到准确的模型参数估值。鉴于此,本文提出了植被高反演多基线分步解算方法。首先,基于多基线体散射占优极化数据构建多基线反演函数模型,利用正则化方法处理模型病态问题,获得模型参数正则化估值,并通过均方误差分析方法筛选模型参数估值,确定出可靠的地体幅度比参数估值;然后,利用地体幅度比参数估值重估多基线纯体相干性,并基于最小二范估计准则融合多基线纯体相干性反演植被高参数。试验结果表明,本文方法可有效提高植被高反演精度,相较于三阶段算法与多基线常规解法,反演精度提高了26%,具备较好的可行性和有效性。

关键词: 多基线, 植被高, 地体幅度比, PolInSAR, 病态问题

Abstract: Affected by the insufficient information of single baseline observation data, the three-stage method assume the ground-to-volume ratio (GVR) to be zero so as to invert the vegetation height. However, this assumption introduces much biases into the parameter estimates which greatly limit the accuracy of the vegetation height inversion. Multi-baseline observation can provide redundant information and is helpful for the inversion of GVR. Nevertheless, there are many geometry parameters that share similar values in a multi-baseline model, which lead to ill-posed problems and reduce the inversion accuracy of conventional algorithm. To this end, we propose a new step-by-step inversion method applied to the multi-baseline observations. Firstly, an adjustment inversion model is constructed by using multi-baseline volume scattering dominant polarization data, and the regularized estimates of model parameters are obtained by regularization method. Then, the reliable estimates of GVR is determined by the mean square error (MSE) analysis of each regularized parameter estimation. Secondly, using the estimated GVR extracts the pure volume coherence, and then inverting the vegetation heights from the pure volume coherences by least squares estimation. The experimental results show that the new method can improve the vegetation height inversion result effectively. The inversion accuracy is improved by 26% with respect to three-stage method and the conventional solution of multi-baseline. The results have demonstrated the feasibility and effectiveness of the new method.

Key words: multi-baseline, vegetation height, GVR, PolInSAR, ill-posed problem

中图分类号: