[1] IDSO S B, JACKSON R D, REGINATO R J. Remote-sensing of crop yields[J]. Science (New York, N Y), 1977, 196(4285): 19-25. [2] 郑凯, 李建胜, 杨戬峰, 等. 天绘一号卫星遥感影像云雪检测的ResNet与DeepLabV3+综合法[J]. 测绘学报, 2020, 49(10): 1343-1353. DOI: 10.11947/j.AGCS.2020.20190420. ZHENG Kai, LI Jiansheng, YANG Jianfeng, et al. A cloud and snow detection method of TH-1 image based on combined ResNet and DeepLabV3+[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10): 1343-1353.DOI: 10.11947/j.AGCS.2020.20190420. [3] IRISH R R, BARKER J L, GOWARD S N, et al. Characterization of the landsat-7 ETM+ automated cloud-cover assessment (ACCA) algorithm[J]. Photogrammetric Engineering & Remote Sensing, 2006, 72(10): 1179-1188. [4] ZHAN Yongjie, WANG Jian, SHI Jianping, et al. Distinguishing cloud and snow in satellite images via deep convolutional network[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1785-1789. [5] IRISH R R. Landsat 7 automatic cloud cover assessment[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2000, 4049: 348-355. [6] ZHU Zhe, WOODCOCK C E. Object-based cloud and cloud shadow detection in Landsat imagery[J]. Remote Sensing of Environment, 2012, 118: 83-94. [7] 王永吉, 明艳芳, 梁天辰, 等. 基于改进LCCD算法的高分六号WFV数据云检测研究[J]. 光学学报, 2020, 40(21): 169-180. WANG Yongji, MING Yanfang, LIANG Tianchen, et al. GF-6 WFV data cloud detection based on improved LCCD algorithm[J]. Acta Optica Sinica, 2020, 40(21): 169-180. [8] WIELAND M, LI Yu, MARTINIS S. Multi-sensor cloud and cloud shadow segmentation with a convolutional neural network[J]. Remote Sensing of Environment, 2019, 230: 111203. [9] LI Pengfei, DONG Limin, XIAO Huachao, et al. A cloud image detection method based on SVM vector machine[J]. Neurocomputing, 2015, 169: 34-42. [10] GHASEMIAN N, AKHOONDZADEH M. Introducing two random forest based methods for cloud detection in remote sensing images[J]. Advances in Space Research, 2018, 62(2): 288-303. [11] HUGHES M, HAYES D. Automated detection of cloud and cloud shadow in single-date landsat imagery using neural networks and spatial post-processing[J]. Remote Sensing, 2014, 6(6): 4907-4926. [12] CHAI Dengfeng, NEWSAM S, ZHANG H K, et al. Cloud and cloud shadow detection in Landsat imagery based on deep convolutional neural networks[J]. Remote Sensing of Environment, 2019, 225: 307-316. [13] JEPPESEN J H, JACOBSEN R H, INCEOGLU F, et al. A cloud detection algorithm for satellite imagery based on deep learning[J]. Remote Sensing of Environment, 2019, 229: 247-259. [14] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015: 234-241. [15] LI Zhiwei, SHEN Huanfeng, CHENG Qing, et al. Deep learning based cloud detection for medium and high resolution remote sensing images of different sensors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150: 197-212. [16] GUO Jianhua, YANG Jingyu, YUE Huanjing, et al. CDnetV2: CNN-based cloud detection for remote sensing imagery with cloud-snow coexistence[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 700-713. [17] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA:IEEE, 2017: 2261-2269. [18] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA:IEEE, 2015: 1-9. [19] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA:IEEE, 2016: 770-778. [20] ZHANG Guangbin, GAO Xianjun, YANG Yuanwei, et al. Controllably deep supervision and multi-scale feature fusion network for cloud and snow detection based on medium- and high-resolution imagery dataset[J]. Remote Sensing, 2021, 13(23): 4805. [21] DING Xiaohan, ZHANG Xiangyu, MA Ningning, et al. RepVGG: making VGG-style ConvNets great again[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA:IEEE, 2021: 13728-13737. [22] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2017, 31(1): 4278-4284. [23] WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA: IEEE,2020: 11531-11539. [24] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of 2018 Computer Vision-ECCV 2018.Cham: Springer,2018: 3-19. [25] FOGA S, SCARAMUZZA P L, GUO Song, et al. Cloud detection algorithm comparison and validation for operational Landsat data products[J]. Remote Sensing of Environment, 2017, 194: 379-390. [26] MOHAJERANI S, SAEEDI P. Cloud and cloud shadow segmentation for remote sensing imagery via filtered jaccard loss function and parametric augmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 4254-4266. [27] SCARAMUZZA P L, BOUCHARD M A, DWYER J L. Development of the landsat data continuity mission cloud-cover assessment algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(4): 1140-1154. [28] VOIGT S, GIULIO-TONOLO F, LYONS J, et al. Global trends in satellite-based emergency mapping[J]. Science (New York, N Y), 2016, 353(6296): 247-252. |