[1] CHENG Gong, HAN Junwei, LU Xiaoqiang. Remote sensing image scene classification: benchmark and state of the art[J]. Proceedings of 2017 IEEE, 2017, 105(10): 1865-1883. [2] YANG Y, NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C]//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems.San Jose, CA,USA: ACM Press, 2010: 270-279. [3] XIA Guisong, HU Jingwen, HU Fan, et al. AID:a benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965-3981. [4] 闫利, 朱睿希, 刘异, 等. 顾及遥感影像场景类别信息的视觉单词优化分类[J]. 遥感学报, 2017, 21(2): 280-290. YAN Li, ZHU Ruixi, LIU Yi, et al. Scene classification of remote sensing images by optimizing visual vocabulary concerning scene label information[J]. Journal of Remote Sensing, 2017, 21(2): 280-290. [5] ZHAO Lijun, TANG Ping, HUO Lianzhi. Land-use scene classification using a concentric circle-structured multiscale bag-of-visual-words model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2014, 7(12): 4620-4631. [6] ZHU Qiqi, ZHONG Yanfei, ZHAO Bei, et al. Bag-of-visual-words scene classifier with local and global features for high spatial resolution remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(6): 747-751. [7] ZUO Zongcheng, ZHANG Wen, ZHANG Dongying. A remote sensing image semantic segmentation method by combining deformable convolution with conditional random fields[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3): 39-49. [8] PENATTI O A B, NOGUEIRA K, DOS SANTOS J A. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains? [C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).Boston, MA, USA: IEEE, 2015: 44-51. [9] HU Fan, XIA Guisong, HU Jingwen, et al. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery[J]. Remote Sensing, 2015,7(11):14680-14707. [10] DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA:IEEE, 2009: 248-255. [11] GAO Yue, SHI Jun, LI Jun, et al. Remote sensing scene classification based on high-order graph convolutional network[J]. European Journal of Remote Sensing, 2021, 54(sup1):141-155. [12] YU Yunlong, LI Xianzhi, LIU Fuxian. Attention GANs: unsupervised deep feature learning for aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing,2020, 58(1): 519-531. [13] ZHANG Wei, TANG Ping, ZHAO Lijun. Remote sensing image scene classification using CNN-CapsNet[J]. Remote Sensing, 2019, 11(5):494. [14] BAZI Y, BASHMAL L, RAHHAL M M A, et al. Vision transformers for remote sensing image classification[J]. Remote Sensing, 2021, 13(3): 516. [15] HE Nanjun, FANG Leyuan, LI Shutao, et al. Skip-connected covariance network for remote sensing scene classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020,31(5): 1461-1474. [16] ZHANG Bin, ZHANG Yongjun, WANG Shugen. A lightweight and discriminative model for remote sensing scene classification with multidilation pooling module[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(8): 2636-2653. [17] 叶利华, 王磊, 张文文, 等. 高分辨率光学遥感场景分类的深度度量学习方法[J]. 测绘学报, 2019, 48(6): 698-707.DOI: 10.11947/j.AGCS.2019.20180434. YE Lihua, WANG Lei, ZHANG Wenwen, et al. Deep metric learning method for high resolution remote sensing image scene classification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(6): 698-707.DOI: 10.11947/j.AGCS.2019.20180434. [18] YU Donghang, GUO Haitao, XU Qing, et al. Hierarchical attention and bilinear fusion for remote sensing image scene classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 6372-6383. [19] DU Peijun, LI Erzhu, XIA Junshi, et al. Feature and model level fusion of pretrained CNN for remote sensing scene classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(8): 2600-2611. [20] WANG Q, LIU S, CHANUSSOT J, et al. Scene classification with recurrent attention of VHR remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 1155-1167. [21] ZHANG Dong, LI Nan, YE Qiaolin. Positional context aggregation network for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters,2020, 17(6): 943-947. [22] XUE Wei, DAI Xiangyang, LIU Li. Remote sensing scene classification based on multi-structure deep features fusion[J]. IEEE Access, 2020, 8: 28746-28755. [23] YU Donghang, XU Qing, GUO Haitao, et al. Aggregating features from dual paths for remote sensing image scene classification[J]. IEEE Access, 2022,10:16740-16755. [24] 马欣悦, 王梨名, 祁昆仑, 等. 基于多尺度循环注意力网络的遥感影像场景分类方法[J]. 地球科学, 2021, 46(10): 3740-3752. MA Xinyue, WANG Liming, QI Kunlun, et al. Remote sensing image scene classification method based on multi-scale cyclic attention network[J]. Earth Science, 2021, 46(10): 3740-3752. [25] 张桐, 郑恩让, 沈钧戈, 等. 基于深度多分支特征融合网络的光学遥感场景分类[J]. 光子学报, 2020, 49(5): 166-177. ZHANG Tong, ZHENG Enrang, SHEN Junge, et al. Remote sensing image scene classification based on deep multi-branch feature fusion network[J]. Acta Photonica Sinica, 2020, 49(5):166-177. [26] SUN Xiongli, ZHU Qiqi, QIN Qianqing. A multi-level convolution Pyramid semantic fusion framework for high-resolution remote sensing image scene classification and annotation[J].IEEE Access, 2021,9: 18195-18208. [27] CAO Ran, FANG Leyuan, LU Ting, et al. Self-attention-based deep feature fusion for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2021,18(1):43-47. [28] CHAIB Souleyman, LIU Huan, GU Yanfeng, et al. Deep feature fusion for VHR remote sensing scene classification[J].IEEE Transactions on Geoscience and Remote Sensing, 2017,55(8):4775-4784. [29] WANG Fei, JIANG Mengqing, QIAN Chen, et al. Residual attention network for image classification[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu, HI, USA: IEEE, 2017: 6450-6458. [30] DU R, CHANG D, BHUNIA A K, et al. Fine-grained visual classification via progressive multi-granularity training of jigsaw patches[C]//Proceedings of 2020 European Conference on Computer Vision.Glasgow, UK:Springer, 2020: 153-168. [31] SONG Jianwei, YANG Ruoyu. Feature boosting, suppression, and diversification for fine-grained visual classification[C]//Proceedings of 2021 International Joint Conference on Neural Networks (IJCNN).Shenzhen, China:IEEE, 2021: 1-8. [32] YU Donghang, XU Qing, LIU Xiangyun, et al. Joint learning using multiscale attention-enhanced features for remote sensing image scene classification[J]. Journal of Applied Remote Sensing, 2022, 16(3): 036506. [33] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2023-01-25]. https://arxiv.org/abs/1409.1556. [34] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016: 770-778. [35] RADOSAVOVIC I, KOSARAJUR P, GIRSHICK R, et al. Designing network design spaces[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Seattle, WA, USA: IEEE, 2020:10425-10433. [36] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016: 2818-2826. [37] MVLLER R, KORNBLITH S, HINTON G. When does label smoothing help? [EB/OL].[2022-03-15]. https://arxiv.org/abs/1906.02629. [38] SELVARAJU R, COGSWELL M, DAS A, et al. Grad-CAM:visual explanations from deep networks via gradient-based localization[C]//Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy:IEEE, 2017:618-626. [39] LAURENS V, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(2605):2579-2605. [40] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. [41] WOO S, PARK J, LEE J. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany: Springer, 2018:3-19. [42] XIE Jie, HE Nanjun, FANG Leyuan, et al. Scale-free convolutional neural network for remote sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6916-6928. [43] BI Qi, QIN Kun, ZHANG Han, et al. RADC-Net: a residual attention based convolution network for aerial scene classification[J]. Neurocomputing, 2020, 377: 345-359. [44] 郭东恩, 夏英, 罗小波, 等. 基于有监督对比学习的遥感图像场景分类[J]. 光子学报, 2021, 50(7): 87-98. GUO Dongen, XIA Ying, LUO Xiaobo, et al. Remote sensing image scene classification based on supervised contrastive learning[J]. Acta Photonica Sinica, 2021, 50(7):87-98. [45] 施慧慧, 徐雁南, 滕文秀, 等. 高分辨率遥感影像深度迁移可变形卷积的场景分类法[J]. 测绘学报, 2021, 50(5): 652-663.DOI: 10.11947/j.AGCS.2021.20200190. SHI Huihui, XU Yannan, TENG Wenxiu, et al. Scene classification of high-resolution remote sensing imagery based on deep transfer deformable convolutional neural networks[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5): 652-663.DOI: 10.11947/j.AGCS.2021.20200190. [46] TANG Xu, MA Qiushuo, ZHANG Xiangrong, et al. Attention consistent network for remote sensing scene classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2030-2045. [47] WANG Xin, DUAN Lin, SHI Aiye, et al. Multilevel feature fusion networks with adaptive channel dimensionality reduction for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters,2022, 19: 1-5. |