测绘学报 ›› 2023, Vol. 52 ›› Issue (5): 831-842.doi: 10.11947/j.AGCS.2023.20220145

• 地图学与地理信息 • 上一篇    下一篇

融合地理条件驱动效应和图卷积的土地利用演化模拟CA模型

赵冰冰, 谭骁勇, 杨学习, 石岩, 邓敏   

  1. 中南大学地球科学与信息物理学院地理信息系, 湖南 长沙 410083
  • 收稿日期:2022-02-28 修回日期:2023-02-01 发布日期:2023-05-27
  • 通讯作者: 杨学习 E-mail:yangxuexi@csu.edu.cn
  • 作者简介:赵冰冰(1996-),女,博士生,研究方向为时空数据挖掘及国土空间优化。E-mail:zbingbing@csu.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFB3904203);国家自然科学基金(42271485);湖南省自然科学基金(2022JJ40585);湖南省教育厅科学研究项目(22B0015);湖南省自然资源厅科研项目(2013-17;2014-12;2015-09;2017-15)

A cellular automata model incorporating geographical condition-driven effects and graph convolutional network for land use evolution simulation

ZHAO Bingbing, TAN Xiaoyong, YANG Xuexi, SHI Yan, DENG Min   

  1. Department of Geo-Informatics, School of Geosciences and Info-physics, Central South University, Changsha 410083, China
  • Received:2022-02-28 Revised:2023-02-01 Published:2023-05-27
  • Supported by:
    The National Key Research and Development Program of China (No. 2022YFB3904203);The National Natural Science Foundation of China (No. 42271485);The Natural Science Foundation of Hunan Province (No. 2022JJ40585);The Scientific Research Project of Education Department of Hunan Province (No. 22B0015);Research Project of Hunan Provincial Department of Natural Resources (Nos. 2013-17;2014-12;2015-09;2017-15)

摘要: 针对现有土地利用演化建模方法受限于欧氏空间约束,从而无法有效建模土地在地理条件驱动下产生的跳跃式增长模式,本文提出一种融合地理条件驱动效应和图卷积的土地利用演化模拟CA模型。首先,通过在卷积神经网络中引入空洞卷积层建模元胞的空间邻域多尺度效应;然后,基于元胞的地理条件向量构建区域地理条件相似图,并应用图卷积神经网络提取相似图中的区域发展潜力特征;最后,融合人工神经网络模型与元胞自动机模型进行土地利用演化模拟。本文凭借对地理条件驱动效应的建模增强了模型对跳跃式增长模式的捕捉能力,实现了城市土地利用演化的有效模拟。本文分别在长沙市芙蓉区、南京市玄武区及南昌市这3个研究区域进行试验。试验结果表明,相比于经典的只考虑欧氏空间邻域特征的土地利用演化建模方法,本文方法在总体精度、Kappa系数和figure of merit(FoM)系数上都有不同程度地提高,能够更为准确地模拟土地利用演化。

关键词: 土地利用演化, 元胞自动机, 图卷积神经网络, 地理模拟, 地理条件驱动效应

Abstract: This paper proposes a cellular automata model for land use evolution that integrates graph convolutional neural network and geographical condition-driven effects, in view of the fact that existing land use evolution modeling methods are limited by Euclidean spatial constraints and thus can not effectively model the emerging phenomenon of land with no historical data in the spatial neighborhood. Firstly, the spatial neighborhood multiscale effect of the cell is modeled by introducing a dilated convolution layer. Then the geographic condition similarity network is constructed based on the geographic condition vector of the cell, applying the graph convolutional neural network to extract the regional potential features in it. Finally, land use evolution is simulated by fusing the artificial neural network and the cellular automata. This paper improves the ability of the model to the emerging phenomenon of land with no historical data in the spatial neighborhood by modeling the geographical condition-driven effects, and successfully achieves effective simulation of urban land use evolution. The experiments were conducted in three research regions including Xuanwu district of Nanjing, Furong district of Changsha, and Nanchang. The results show that our method improves in overall accuracy (OA), Kappa coefficient, and figure of merit(FoM), allowing for more accurate modeling of land use evolution than the classical land use evolution modeling method considering only Euclidean spatial neighborhood features.

Key words: land use evolution, cellular automata, graph convolutional networks, geographic simulation, geographical condition-driven effects

中图分类号: