测绘学报 ›› 2023, Vol. 52 ›› Issue (5): 818-830.doi: 10.11947/j.AGCS.2023.20220021

• 地图学与地理信息 • 上一篇    下一篇

顾及缺失值的因果图时空预测网络

王培晓1, 张彤1, 聂士超2, 杨瑾萱3, 王天骄1   

  1. 1. 武汉大学测绘遥感信息工程国家重点实验室, 湖北 武汉 430079;
    2. 武汉大学资源与环境科学学院, 湖北 武汉 430079;
    3. 武汉大学遥感信息工程学院, 湖北 武汉 430079
  • 收稿日期:2022-01-19 修回日期:2022-09-18 发布日期:2023-05-27
  • 通讯作者: 张彤 E-mail:zhangt@whu.edu.cn
  • 作者简介:王培晓(1994-),男,博士生,研究方向为时空数据分析、时空预测、轨迹分析。E-mail:peixiaowang@whu.edu.cn
  • 基金资助:
    国家重点研发计划(2019YFE0106500);国家自然科学基金(41871308);中央高校基本科研业务费专项资金资助

A causal graph convolutional network considering missing values for spatio-temporal prediction

WANG Peixiao1, ZHANG Tong1, NIE Shichao2, YANG Jinxuan3, WANG Tianjiao1   

  1. 1. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China;
    2. School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China;
    3. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
  • Received:2022-01-19 Revised:2022-09-18 Published:2023-05-27
  • Supported by:
    The National Key Research and Development Program of China (Nos. 2022YFB3904102;2019YFE0106500);The National Natural Science Foundation of China (No. 41871308);The Fundamental Research Funds for the Central Universities

摘要: 时空预测是地理时空大数据挖掘的基础研究命题。目前,多种模型用于预测未知系统的时空状态。然而,存在的大多数预测模型仅在没有缺失数据的时空数据集上进行测试,忽略了缺失值对预测结果的影响。在真实场景中,由于传感器或网络传输故障,数据缺失是一个不容忽视的问题。鉴于此,本文提出了一种顾及缺失值的因果图卷积网络(causal graph convolutional network considering missing values,Causal-GCNM)模型用于时空预测。Causal-GCNM模型可以自动捕捉时空数据中的缺失模式,使得Causal-GCNM模型在不需要借助额外插值算法的前提下,可以直接完成时空预测任务。本文提出的模型在3种真实的时空数据集(交通流数据集、PM2.5监测数据集及气温监测数据集)得到了验证。试验结果表明,Causal-GCNM模型在4种缺失条件(20%随机缺失、20%块状缺失、40%随机缺失及40%块状缺失)下仍然具有较好的预测性能,并在预测精度和计算效率两类指标上优于10种存在的基线方法。

关键词: 地理时空大数据挖掘, 因果卷积网络, 图卷积网络, 时空预测, 时空数据缺失

Abstract: Spatio-temporal prediction is one of the basic research topics of geographic spatio-temporal big data mining. There are many attempts to predict spatio-temporal state of unknown systems using various deep learning algorithms. However, most existing prediction models are only tested on spatio-temporal data assuming no missing data entries, ignoring the impact of missing values on the prediction results. In the actual scenarios, data missing is an inevitable problem due to sensor or network transmission failures. Therefore, we propose a novel causal graph convolutional network considering missing values (Causal-GCNM) for spatio-temporal prediction. The proposed model can automatically capture missing patterns in the spatio-temporal data, enabling the Causal-GCNM model to directly complete the spatio-temporal prediction task without additional interpolation. The proposed model was validated on three real spatio-temporal datasets (traffic flow dataset, PM2.5 monitoring dataset, and temperature monitoring dataset). Experimental results show that the Causal-GCNM model has good prediction performance under four missing scenarios (20% random missing, 20% block missing, 40% random missing, 40% block missing), and outperforms ten existing baseline methods in terms of prediction accuracy and computational efficiency.

Key words: geographic spatio-temporal big data mining, causal convolution network, graph convolution network, spatio-temporal prediction, spatiotemporal data missing

中图分类号: