[1] 宁津生, 陈俊勇, 李德仁, 等. 测绘学概论[M]. 武汉:武汉大学出版社, 2016. NING Jinsheng, CHEN Junyong, LI Deren, et al. Introduction to Geomatics[M]. Wuhan:Wuhan University Press, 2016. [2] 董箭, 彭认灿, 张立华, 等. 数字水深优化建模及滚动球处理技术研究[M].北京: 测绘出版社, 2020. DONG Jian, PENG Rencan, ZHANG Lihua, et al. Research on Optimization Digital Depth Modeling and Rolling Ball Transform Processing[M]. Beijing:China Surveying and Mapping Press, 2020. [3] 彭认灿, 于彩霞, 董箭, 等. 数字海图制图[M].北京: 测绘出版社, 2021. PENG Rencan, YU Caixia, DONG Jian, et al. Digital Chart Cartography[M].Beijing:China Surveying and Mapping Press, 2021. [4] 孙立新, 黄明, 任美睿. 地图扫描影像中文字、符号注记的自动提取[J]. 测绘工程, 1997, 6(3): 26-30. SUN Lixin, HUANG Ming, REN Meirui. Automatic extracting of the text and symbol annotation in map scanning image[J]. Engineering of Surveying and Mapping, 1997, 6(3): 26-30. [5] 徐战武, 张涛, 刘肖琳. 地形图数字注记的自动提取与识别[J]. 中文信息学报, 2001, 15(2): 51-56. XU Zhanwu, ZHANG Tao, LIU Xiaolin. Automatic extraction and recognition of numbers in topographic maps[J]. Journal of Chinese Information Processing, 2001, 15(2): 51-56. [6] 陈睿, 张祖勋, 张剑清. 扫描地形图中数字高程注记的提取和识别[J]. 武汉大学学报(信息科学版), 2002, 27(2): 194-198. CHEN Rui, ZHANG Zuxun, ZHANG Jianqing. Identification of digital elevation annotation in scanned map[J]. Geomatics and Information Science of Wuhan University, 2002, 27(2): 194-198. [7] 许鹏飞. 彩色地形图中地理要素提取与点状符号识别算法研究[D]. 西安: 西安电子科技大学, 2014. XU Pengfei. Research on the algorithm of geographical elements extraction and point symbol recognition in color topographic map[D]. Xi'an: Xidian University,2014. [8] 沈意浪, 艾廷华, 赵荣. 一种彩色栅格地图注记识别方法[J]. 武汉大学学报(信息科学版), 2018, 43(1): 145-151. SHEN Yilang, AI Tinghua, ZHAO Rong. A method for color raster map annotation recognition[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 145-151. [9] 辛动军, 史迎春. 地图要素识别与提取研究现状[J]. 中州大学学报, 2009, 26(4): 115-118. XIN Dongjun, SHI Yingchun. Research status of map features' identification and extraction[J]. Journal of Zhongzhou University, 2009, 26(4): 115-118. [10] GOODFELLOW I J, BULATOV Y, IBARZ J, et al. Multi-digit number recognition from street view imagery using deep convolutional neural networks[C]//Proceedings of 2014 International Conference on Learning Representations. Banff: ICLR,2014:1-13. [11] 孟亦菲, 郑贵洲, 冀炜臻. 集成空间变换结构与深度残差网络的遥感影像场景分类方法[J/OL]. 地球科学:1-15[2021-12-16]. http://kns.cnki.net/kcms/detail/42.1874.P.20211125.1532.002.html. MENG Yifei, ZHENG Guizhou, JI Weizhen. Remote sensing image scene classification method integrating spatial transformation structure and sounding residual network[J/OL]. Earth Science: 1-15[2021-12-16]. http://kns.cnki.net/kcms/detail/42.1874.P.20211125.1532.002.html. [12] 李典. 复杂场景下基于YOLOv3的人脸检测研究[D]. 广州:广东技术师范大学, 2021. LI Dian. Research on face detection in complex scenes based on YOLOv3[D]. Guangzhou: Guangdong Polytechnic Normal University, 2021. [13] 王明吉, 刘博, 陈秋梦, 等. 基于YOLOv3的车牌定位识别系统[J]. 工业仪表与自动化装置, 2022(1): 97-100. WANG Mingji, LIU Bo, CHEN Qiumeng, et al. License plate location and recognition system based on YOLOv3[J]. Industrial Instrumentation & Automation, 2022(1): 97-100. [14] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251. ZHOU Feiyan, JIN Linpeng, DONG Jun. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251. [15] GUO Qiang, LEI Jun, TU Dan, et al. Reading numbers in natural scene images with convolutional neural networks[C]//Proceedings of 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC).Wuhan: IEEE, 2014: 48-53. [16] LI Huali, LIU Jun, ZHOU Xiran. Intelligent map reader: a framework for topographic map understanding with deep learning and gazetteer[J]. IEEE Access, 2018, 6: 25363-25376. [17] 王家耀. 时空大数据时代的地图学[J]. 测绘学报, 2017, 46(10): 1226-1237. DOI: 10.11947/j.AGCS.2017.20170308. WANG Jiayao. Cartography in the age of spatio-temporal big data[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1226-1237. DOI: 10.11947/j.AGCS.2017.20170308. [18] 温佩芝, 姚航, 沈嘉炜. 基于卷积神经网络的石刻书法字识别方法[J]. 计算机工程与设计, 2018, 39(3): 867-872. WEN Peizhi, YAO Hang, SHEN Jiawei. Recognition method of stone inscription font based on convolution neural network[J]. Computer Engineering and Design, 2018, 39(3): 867-872. [19] 任福, 侯宛玥. 面向机器阅读的地图名称注记类别识别方法[J]. 武汉大学学报(信息科学版), 2020, 45(2): 273-280. REN Fu, HOU Wanyue. Identification method of map name annotation category for machine reading[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 273-280. [20] MADAKANNU A, SELVARAJ A. DIGI-Net: a deep convolutional neural network for multi-format digit recognition[J].Neural Computing and Applications, 2020, 32(15): 11373-11383. [21] ASIF M, BIN AHMAD M, MUSHTAQ S, et al. Long multi-digit number recognition from images empowered by deep convolutional neural networks[J]. The Computer Journal, 2022, 65(10): 2815-2827. [22] 艾廷华.深度学习赋能地图制图的若干思考[J]. 测绘学报, 2021, 50(9): 1170-1182.DOI:10.11947/j.AGCS.2021.20210091. AI Tinghua. Some thoughts on deep learning empowerment map drawing[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1170-1182. DOI:10.11947/j.AGCS.2021.20210091. [23] 周熙然,李德仁,薛勇,等.地图图像智能识别与理解:特征、方法与展望[J/OL].武汉大学学报(信息科学版),2022,47(05):641-650. DOI:10.13203/j.whugis20210300. ZHOU Xiran, LI Deren, XUE Yong,et al. GeoAI framework of intelligent recognition for ubiquitous map imagery: current state and prospect[J/OL]. Geomatics and Information Science of Wuhan University,2022,47(05):641-650. DOI:10.13203/j.whugis20210300. [24] 周熙然, 李德仁, 薛勇, 等. 地图图像智能识别与理解: 特征、方法与展望[J]. 武汉大学学报(信息科学版), 2022, 47(5): 641-650. ZHOU Xiran, LI Deren, XUE Yong, et al. Intelligent map image recognition and understanding: representative features, methodology and prospects[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 641-650. [25] REDMON J, FARHADI A. YOLOv3: an incremental improvement[C]//Proceedings of 2018 Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE,2018: 85-89. [26] 蒲玮. 基于YOLOv3的遥感图像目标检测算法研究[D]. 天津:河北工业大学, 2020. PU Wei. Research on target detection algorithm of remote sensing image based on YOLOv3[D]. Tianjin: Hebei University of Technology, 2020. [27] 赵永强, 饶元, 董世鹏, 等. 深度学习目标检测方法综述[J]. 中国图象图形学报, 2020, 25(4): 629-654. ZHAO Yongqiang, RAO Yuan, DONG Shipeng, et al. Survey on deep learning object detection[J]. Journal of Image and Graphics, 2020, 25(4): 629-654. [28] 张俊, 杨光, 胡东升, 等. 基于注意力机制与YOLOv3的电表自动读数算法[J]. 电力信息与通信技术, 2021, 19(12): 82-87. ZHANG Jun, YANG Guang, HU Dongsheng, et al. An automatic reading algorithm of power meter based on YOLOv3 and attention mechanism[J]. Electric Power Information and Communication Technology, 2021, 19(12): 82-87. [29] 蔡兴泉, 阮瓒茜, 孙海燕. 基于YOLOv3和MobileNetv2的银行卡号识别方法[J]. 计算机辅助设计与图形学学报, 2022, 34(1): 142-151. CAI Xingquan, RUAN Zanxi, SUN Haiyan. Bank card number identification method based on YOLOv3 and MobileNetv2[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(1): 142-151. [30] 贺智龙. 基于YOLOv3的车牌识别研究[D]. 济南:齐鲁工业大学, 2021. HE Zhilong. Research on license plate recognition based on YOLOv3[D]. Jinan: Qilu University of Technology, 2021. [31] 张婷婷, 马明栋, 王得玉. OCR文字识别技术的研究[J]. 计算机技术与发展, 2020, 30(4): 85-88. ZHANG Tingting, MA Mingdong, WANG Deyu. Research on OCR technology[J]. Computer Technology and Development, 2020, 30(4): 85-88. [32] United Kingdom Hydrographic Office.Symbols and Abbreviations used on Admiralty paper Charts Ed4: UKHO-5011[S]. taunton:[s.n.], 2008. [33] 嵇新浩. 基于连通域的文本定位方法研究[D]. 杭州:浙江工业大学, 2007. JI Xinhao. Connected component based approach for text localization in images[D]. Hangzhou: Zhejiang University of Technology, 2007. [34] 张羽. 目标检测中的交并比损失函数研究[D]. 合肥:安徽大学, 2021. ZHANG Yu. Research on IOU loss function in target detection[D]. Hefei: Anhui University, 2021. [35] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770-778. [36] 国家质量技术监督局.中国航海图书编绘规范:GB 12320—1998 [S].北京: 中国标准出版社, 1999. The State Bureau of Quality and Technical Supervision.Specifications for Chinese nautical charts: GB 12320—1998 [S].Beijing: China Standard Press, 1999. [37] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [38] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of 2016 Computer Vision-ECCV. Cham: Springer International Publishing, 2016: 21-37. [39] ZHU Xingkui, LYU Shuchang, WANG Xu, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Montreal: IEEE, 2021: 2778-2788. [40] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 936-944. [41] 朱强强. 面向复杂场景的小目标检测识别深度网络模型研究[D]. 南昌:江西科技师范大学, 2021. ZHU Qiangqiang. Research on the deep network model of small target detection and recognition for complex scene[D]. Nanchang: Jiangxi Normal University of Science and Technology, 2021. |