[1] 李德仁. 移动测量技术及其应用[J]. 地理空间信息, 2006, 4(4):1-5. LI Deren. Mobile mapping technology and its applications[J]. Geospatial Information, 2006, 4(4):1-5. [2] WANG Jing, WANG Chaoliang, SONG Xianfeng, et al. Automatic intersection and traffic rule detection by mining motor-vehicle GPS trajectories[J]. Computers, Environment and Urban Systems, 2017, 64: 19-29. [3] LU L, WEI D, LU J, et al. Analysis of signalized intersection U-turn design based on the micro-simulation study[C]//Proceedings of CICTP 2012. Beijing: American Society of Civil Engineers, 2012: 2266-2277. [4] CHEN C C, KNOBLOCK C A, SHAHABI C. Automatically and accurately conflating raster maps with orthoimagery[J]. Geoinformatica, 2008, 12(3): 377-410. [5] LONG Ying. Redefining Chinese city system with emerging new data[J]. Applied Geography, 2016, 75: 36-48. [6] WANG Jing, RUI Xiaoping, SONG Xianfeng, et al. A novel approach for generating routable road maps from vehicle GPS traces[J]. International Journal of Geographical Information Science, 2015, 29(1): 69-91. [7] YANG Xue, HOU Liang, GUO Mingqiang, et al. Road intersection identification from crowdsourced big trace data using Mask-RCNN[J]. Transactions in GIS, 2022, 26(1): 278-296. [8] SAEEDIMOGHADDAM M, STEPINSKI T F. Automatic extraction of road intersection points from USGS historical map series using deep convolutional neural networks[J]. International Journal of Geographical Information Science, 2020, 34(5): 947-968. [9] FU Zhongliang, FAN Liang, SUN Yangjie, et al. Density adaptive approach for generating road network from GPS trajectories[J]. IEEE Access, 2020, 8: 51388-51399. [10] KUNTZSCH C, SESTER M, BRENNER C. Generative models for road network reconstruction[J]. International Journal of Geographical Information Science, 2016, 30(5): 1012-1039. [11] ZHANG Yingying, ZHANG Junping, LI Tong, et al. Road extraction and intersection detection based on tensor voting[C]//Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing: IEEE, 2016: 1587-1590. [12] DAI Jiguang, WANG Yang, LI Wantong, et al. Automatic method for extraction of complex road intersection points from high-resolution remote sensing images based on fuzzy inference[J]. IEEE Access, 2020, 8: 39212-39224. [13] TVMEN V, ERGEN B. Intersections and crosswalk detection using deep learning and image processing techniques[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 543: 123510. [14] ZHAO Zhongyuan, FU Hao, REN Ruike, et al. Real-time intersection detection based on satellite image and 3D LIDAR point cloud[C]//Proceedings of 2021 International Conference on Autonomous Unmanned Systems (ICAUS 2021). Singapore: Springer Singapore, 2022: 2868-2878. [15] ZHAO Zhongyuan, FU Hao, REN Ruike, et al. Real-time intersection detection based on satellite image and 3D LIDAR point cloud[C]//Proceedings of 2021 International Conference on Autonomous Unmanned Systems (ICAUS 2021). Singapore: Springer Singapore, 2022: 2868-2878. [16] 贺勇, 路昊, 王春香, 等. 基于多传感器的车道级高精细地图制作方法[J]. 长安大学学报(自然科学版), 2015, 35(S1): 274-278. HE Yong, LU Hao, WANG Chunxiang, et al. Generation of precise lane-level maps based on multi-sensors[J]. Journal of Chang'an University (Natural Science Edition), 2015, 35(S1): 274-278. [17] BAI Q, LINDENBERGH R C, VIJVERBERG J, et al. Road type classification of MLS point clouds using deep learning[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2021, 43: 115-122. [18] ZHAO Lisheng, MAO Jiali, PU Min, et al. Automatic calibration of road intersection topology using trajectories[C]//Proceedings of IEEE 36th International Conference on Data Engineering (ICDE).Dallas:IEEE, 2020: 1633-1644. [19] YANG Xue, TANG Luliang, REN Chang, et al. Pedestrian network generation based on crowdsourced tracking data[J]. International Journal of Geographical Information Science, 2020, 34(5): 1051-1074. [20] JENELIUS E,KOUTSOPOULOS H N. Travel time estimation for urban road networks using low frequency probe vehicle data[J]. Transportation Research Part B: Methodological, 2013, 53(4):64-81. [21] BIAGIONI J, ERIKSSON J. Map inference in the face of noise and disparity[C]//Proceedings of the 20th International Conference on Advances in Geographic Information Systems. Redondo Beach: ACM Press, 2012: 79-88. [22] SCHROEDL S, WAGSTAFF K, ROGERS S, et al. Mining GPS traces for map refinement[J]. Data Mining and Knowledge Discovery, 2004, 9(1): 59-87. [23] HUANG Jincai, ZHANG Yunfei, DENG Min, et al. Mining crowdsourced trajectory and geo-tagged data for spatial-semantic road map construction[J]. Transactions in GIS, 2022, 26(2): 735-754. [24] FATHI A, KRUMM J. Detecting road intersections from GPS traces[M]//Geographic Information Science. Berlin: Springer, 2010: 56-69. [25] BRAKATSOULAS S, PFOSER D, SALAS R, et al. On map-matching vehicle tracking data[C]//Proceedings of the 31st International Conference on Very Large Data Bases. Trondheim: ACM Press, 2005: 853-864. [26] TANG Luliang, YANG Xue, KAN Zihan, et al. Lane-level Road information mining from vehicle GPS trajectories based on Naïve Bayesian classification[J]. ISPRS International Journal of Geo-Information, 2015, 4(4): 2660-2680. [27] 王宇轩. 城市道路交叉口进口道掉头交通设计方法研究[D]. 西安: 长安大学, 2019. WANG Yuxuan. Study on U-turn traffic design method of entrance at urban road intersection[D]. Xi'an: Changan University,2019. [28] YANG Xue, TANG Luliang, NIU Le, et al. Generating lane-based intersection maps from crowdsourcing big trace data[J]. Transportation Research Part C: Emerging Technologies, 2018, 89: 168-187. [29] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. Portland:ACM Press, 1996: 226-231. [30] SCHUBERT E, SANDER J, ESTER M, et al. DBSCAN revisited, revisited: why and how you should (still) use DBSCAN[J]. ACM Transactions on Database Systems, 42(3): 1-21. [31] ZOUHRI W, HOMRI L, DANTAN J Y. Handling the impact of feature uncertainties on SVM: a robust approach based on Sobol sensitivity analysis[J]. Expert Systems with Applications, 2022, 189: 115691. [32] SCHOLKOPF B,BURGES C J C,SUNG K K,et al. Comparing support vector machine with baussian kemels to radial basis function classifers[J]. Signal Processing, 1997, 45(11): 2758-2765. [33] FAN Yaxin, ZHU Xinyan, SHE Bing, et al. Network-constrained spatio-temporal clustering analysis of traffic collisions in Jianghan District of Wuhan, China[J]. PLoS One, 2018, 13(4): e0195093. [34] 牛强, 杨超, 顾重泰, 等. 基于实时交通态势数据和地理加权回归的城市道路通畅性影响因素分析: 以武汉市中心区工作日早高峰为例[J]. 现代城市研究, 2022, 37(3): 72-79. NIU Qiang, YANG Chao, GU Zhongtai, et al. Analysis of influencing factors of urban road patency based on real-time traffic situation data and geographic weighted regression: taking the weekday morning peak in downtown Wuhan as an example[J]. Modern Urban Research, 2022, 37(3): 72-79. |