[1] 中国卫星导航系统管理办公室. 北斗卫星导航系统应用服务体系(1.0版)[EB/OL].[2023-08-11]. http://www.beidou.gov.cn/xt/gfxz/201912/P020191227332811335890.pdf. China Satellite Navigation Office. The application service architecture of BeiDou navigation satellite system (version 1.0) [EB/OL]. [2023-08-11]. http://www.beidou.gov.cn/xt/gfxz/201912/P020191227332811335890.pdf. [2] TANG Chengpan, HU Xiaogong, ZHOU Shanshi, et al. Initial results of centralized autonomous orbit determination of the new-generation BDS satellites with inter-satellite link measurements[J]. Journal of Geodesy, 2018, 92(10): 1155-1169. [3] 唐成盼, 胡小工, 周善石, 等. 利用星间双向测距数据进行北斗卫星集中式自主定轨的初步结果分析[J]. 中国科学(物理学 力学 天文学), 2017, 47(2): 95-105. TANG Chengpan, HU Xiaogong, ZHOU Shanshi, et al. Centralized autonomous orbit determination of BeiDou navigation satellites with inter-satellite link measurements: preliminary results[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2017, 47(2): 95-105. [4] PAN Junyang, HU Xiaogong, ZHOU Shanshi, et al. Time synchronization of new-generation BDS satellites using inter-satellite link measurements[J]. Advances in Space Research, 2018, 61(1): 145-153. [5] CHEN Jinping, HU Xiaogong, TANG Chengpan, et al. SIS accuracy and service performance of the BDS-3 basic system[J]. Science China Physics, Mechanics & Astronomy, 2020, 63(6): 269511. [6] 蔡洪亮, 孟轶男, 耿涛, 等. 北斗三号卫星星地星间联合精密定轨初步结果[J]. 武汉大学学报(信息科学版), 2020, 45(10): 1493-1500. CAI Hongliang, MENG Yinan, GENG Tao, et al. Initial results of precise orbit determination using satellite-ground and inter-satellite link observations for BDS-3 satellites[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1493-1500. [7] 杨宇飞. 利用星间链路提升北斗PNT服务空间信号精度理论与方法研究[D]. 郑州:信息工程大学, 2019. YANG Yufei. Research on the method and theory of BDS-3 PNT service SIS accuracy improvement using inter-satellite link[D]. Zhengzhou: Information Engineering University, 2019. [8] 唐成盼.融合多种观测数据计算北斗导航卫星的高精度广播星历[D].北京:中国科学院大学,2017. TANG Chenpan. Generation of precise broadcast orbits for BeiDou navigation satellites with multiple tracking measurements[D]. Beijing: University of Chinese Academy of Sciences, 2017. [9] URSCHL C, GURTNER W, HUGENTOBLER U, et al. Validation of GNSS orbits using SLR observations[J]. Advances in Space Research, 2005, 36(3): 412-417. [10] ZHAO Gang, ZHOU Shanshi, ZHOU Xuhua, et al. Precise orbit determination of BeiDou satellites using satellite laser ranging[C]// Proceedings of 2013 China Satellite Navigation Conference. Berlin: Springer, 2013: 221-229. [11] YANG Honglei, XU Tianhe, NIE Wenfeng, et al. Precise orbit determination of BDS-2 and BDS-3 using SLR[J]. Remote Sensing, 2019, 11(23): 2735. [12] BURY G, SOS'NICA K, ZAJDEL R. Multi-GNSS orbit determination using satellite laser ranging[J]. Journal of Geodesy, 2019, 93(12): 2447-2463. [13] URSCHL C, BEUTLER G, GURTNER W, et al. Contribution of SLR tracking data to GNSS orbit determination[J]. Advances in Space Research, 2007, 39(10): 1515-1523. [14] HACKEL S, STEIGENBERGER P, HUGENTOBLER U, et al. Galileo orbit determination using combined GNSS and SLR observations[J]. GPS Solutions, 2015,19:15-25. [15] HIDALGO I, MOZO A, NAVARRO P, et al. Use of SLR observations to improve GIOVE-B orbit and clock determination[C]// Proceedings of the 16th International Workshop on Laser Ranging. Poznan: [s.n.], 2008:71-84. [16] 孔垚, 张小贞, 孙保琪, 等. SLR数据对北斗卫星精密定轨的作用分析[J]. 测绘学报, 2018, 47(S0): 86-92. DOI: 10.11947/j.AGCS.2018.20180293. KONG Yao, ZHANG Xiaozhen, SUN Baoqi, et al.Analysis of the impact of SLR data on precise orbit determination of BeiDou satellites[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(S0): 86-92. DOI: 10.11947/j.AGCS.2018.20180293. [17] 曲伟菁, 吴斌, 周旭华. 根据人卫激光测距、GRACE和地球物理模型求解地球低阶重力场季节变化[J]. 测绘学报, 2012, 41(6): 904-909. QU Weijing, WU Bin, ZHOU Xuhua. Variations of the Earth's gravity field from GRACE, geophysical model and satellite laser ranging[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(6): 904-909. [18] 吴斌, 彭碧波, 许厚泽. 地心变化的测定[J]. 科学通报, 1999, 44(10): 1106-1108. WU Bin, PENG Bibo, XU Houze. Determination of geocentric change[J]. Chinese Science Bulletin, 1999, 44(10): 1106-1108. [19] CHENG M K, SHUM C K, TAPLEY B D. Determination of long-term changes in the Earth's gravity field from satellite laser ranging observations[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B10): 22377-22390. [20] LUCEI V, BASONI D S, PAVLIS E C, et al. The ILRS Analysis Center's report on the evaluation of ITRF2020P[C]//Proceedings of the 24th EGU General Assembly. Vienna: EGU,2022:23-27. [21] ALTAMIMI Z, REBISCHUNG P, MÉTIVIER L, et al. ITRF2014: a new release of the international terrestrial reference frame modeling nonlinear station motions[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(8): 6109-6131. [22] BRUNI S, REBISCHUNG P, ZERBINI S, et al. Assessment of the possible contribution of space ties on-board GNSS satellites to the terrestrial reference frame[J]. Journal of Geodesy, 2018, 92(4): 383-399. [23] THALLER D, SOSNICA K, DACH R, et al. Geocenter coordinates from GNSS and combined GNSS-SLR solutions using satellite co-locations[C]//Proceedings of 2011 IAG General Assembly.Melbourne: Springer, 2013: 129-134. [24] THALLER D, SOS'NICA K, STEIGENBERGER P, et al. Pre-combined GNSS-SLR solutions: what could be the benefit for the ITRF? [C]// Proceedings of 2014 IAG Commission 1 Symposium. Cham: Springer, 2015: 85-94. [25] ZHU S Y, MASSMANN F, YU Y, et al. Satellite antenna phase center offsets and scale errors in GPS solutions[J]. Journal of Geodesy, 2003, 76(11): 668-672. [26] GE M. Impact of GPS satellite antenna offsets on scale changes in global network solutions[J]. Geophysical Research Letters, 2005, 32(6): L06310. [27] MEINDL M, BEUTLER G, THALLER D, et al. Geocenter coordinates estimated from GNSS data as viewed by perturbation theory[J]. Advances in Space Research, 2013, 51(7): 1047-1064. [28] 徐天河, 王潜心, 于素梅, 等. 利用区域网GPS/BDS数据确定地球自转参数[J]. 导航定位学报, 2015, 3(3): 13-17. XU Tianhe, WANG Qianxin, YU Sumei, et al. Earth rotation parameters determination using local GPS/BDS network data[J]. Journal of Navigation and Positioning, 2015, 3(3): 13-17. [29] GLASER S, MICHALAK G, MÄNNEL B, et al. Reference system origin and scale realization within the future GNSS constellation “Kepler”[J]. Journal of Geodesy, 2020, 94(12): 117. [30] 朱元兰, 冯初刚, 张飞鹏. 用中国卫星激光测距资料解算地球定向参数[J]. 天文学报, 2006, 47(4): 441-449. ZHU Yuanlan, FENG Chugang, ZHANG Feipeng. Earth orrientation parameter solved by lageos Chinese SLR data[J]. Acta Astronomica Sinica, 2006, 47(4): 441-449. [31] MENN M D, BERNSTEIN H. Ephemeris observability issues in the global positioning system (GPS) autonomous navigation (AUTONAV)[C]//Proceedings of 1994 IEEE Position, Location and Navigation Symposium. Las Vegas: IEEE, 2002: 677-680. [32] China Satellite Navigation Office. Satellite Information of BDS[EB/OL]. [2023-08-11]. https://en.beidou.gov.cn/SYSTEM/Officialdocument/. [33] SPRINGER T A, BEUTLER G, ROTHACHER M. A new solar radiation pressure model for GPS satellites[J]. GPS Solutions, 1999, 2(3): 50-62. [34] PETIT G, LUZUM B. IERS conventions[M]. Frankfurt am Main: Verlag des Bundesamts fur Kartographie und Geodasie,2010. [35] LYARD F, LEFEVRE F, LETELLIER T, et al. Modelling the global ocean tides: modern insights from FES2004[J]. Ocean Dynamics, 2006, 56(5): 394-415. [36] 毛悦, 宋小勇, 贾小林, 等. 北斗卫星ECOM光压模型参数选择策略分析[J]. 测绘学报, 2017, 46(11): 1812-1821. DOI: 10.11947/j.AGCS.2017.20160485. MAO Yue, SONG Xiaoyong, JIA Xiaolin, et al. Analysis about parameters selection strategy of ECOM solar radiation pressure model for BeiDou satellites[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(11): 1812-1821. DOI: 10.11947/j.AGCS.2017.20160485. |