[1] YANG Yuanxi, LIU Li, LI Jinlong, et al. Featured services and performance of BDS-3[J]. Science Bulletin, 2021, 66(20): 2135-2143. [2] YANG Yuanxi, DING Qun, GAO Weiguang, et al. Principle and performance of BDSBAS and PPP-B2b of BDS-3[J]. Satellite Navigation, 2022, 3(1): 1-9. [3] 党亚民, 郭春喜, 蒋涛, 等. 2020珠峰测量与高程确定[J]. 测绘学报, 2021, 50(4): 556-561. DOI: 10.11947/j.AGCS.2021.20210034. DANG Yamin, GUO Chunxi, JIANG Tao, et al. 2020 height measurement and determination of Mount Qomolangma[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4): 556-561. DOI: 10.11947/j.AGCS.2021.20210034. [4] 肖云, 杨元喜, 潘宗鹏, 等. 中国卫星跟踪卫星重力测量系统性能与应用[J]. 科学通报, 2023, 68(20): 2655-2664. XIAO Yun, YANG Yuanxi, PAN Zongpeng, et al. Performance and application of the Chinese satellite-to-satellite tracking gravimetry system[J]. Chinese Science Bulletin, 2023, 68(20): 2655-2664. [5] 中国科学院. 海洋大地测量基准与水下导航[M]. 北京: 科学出版社,2022. Chinese Academy of Sciences. Marine geodetic datum and underwater navigation[M]. Beijing: Science Press, 2022. [6] 孙大军, 郑翠娥, 张居成, 等. 水声定位导航技术的发展与展望[J]. 中国科学院院刊, 2019, 34(3): 331-338. SUN Dajun, ZHENG Cuie, ZHANG Jucheng, et al. Development and prospect for underwater acoustic positioning and navigation technology[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(3): 331-338. [7] YANG Yuanxi, LIU Yanxiong, SUN Dajun, et al. Seafloor geodetic network establishment and key technologies[J]. Science China (Earth Sciences), 2020, 63(8): 1188-1198. [8] 刘焱雄, 李梦昊, 刘杨, 等. 海底大地基准建设技术及其研究进展[J]. 海洋科学进展, 2022, 40(4): 684-700. LIU Yanxiong, LI Menghao, LIU Yang, et al. Research progress of seafloor geodetic datum construction technology[J]. Advances in Marine Science, 2022, 40(4): 684-700. [9] 姜卫平, 李昭, 魏娜, 等. 大地测量坐标框架建立的进展与思考[J]. 测绘学报, 2022, 51(7): 1259-1270. DOI: 10.11947/j.AGCS.2022.20220232. JIANG Weiping, LI Zhao, WEI Na, et al. Progress and thoughts on establishment of geodetic coordinate frame[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1259-1270. DOI: 10.11947/j.AGCS.2022.20220232. [10] 孙付平, 贾彦锋, 朱新慧, 等. 毫米级地球参考框架动态维持技术研究进展[J]. 武汉大学学报(信息科学版), 2022, 47(10): 1688-1700. SUN Fuping, JIA Yanfeng, ZHU Xinhui, et al. Advances in dynamic maintenance technology of mm-level terrestrial reference frame[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1688-1700. [11] 杨元喜, 明锋. 中国时空基准建设现状与未来发展[J]. 中国科学: 地球科学, 2023, 53(9): 2192-2195. YANG Yuanxi, MING Feng. Current status and future development of spatiotemporal datum construction in China[J]. Scientia Sinica (Terrae), 2023, 53(9): 2192-2195. [12] 杨元喜, 任夏, 贾小林, 等. 以北斗系统为核心的国家安全PNT体系发展趋势[J]. 中国科学: 地球科学, 2023, 53(5): 917-927. YANG Yuanxi, REN Xia,JIA Xiaolin, et al. Development trends of the national secure PNT system based on BDS[J]. Scientia Sinica (Terrae), 2023, 53(5): 917-927. [13] 明锋, 杨元喜, 曾安敏, 等. 弹性PNT概念内涵、特征及其辨析[J]. 测绘通报, 2023(4): 79-86, 176. MING Feng, YANG Yuanxi, ZENG Anmin, et al. The conceptual connotation, characteristics and discrimination of resilient PNT[J]. Bulletin of Surveying and Mapping, 2023(4): 79-86, 176. [14] YANG Fei, MENG Xiaolin, GUOJiming, et al. Development and evaluation of the refined zenith tropospheric delay (ZTD) models[J]. Satellite Navigation, 2021, 2(1): 1-9. [15] QIN Xianping, YANG Yuanxi, SUN Bijiao. A robust method to estimate the coordinates of seafloor stations by direct-path ranging[J]. Marine Geodesy, 2023, 46(1): 83-98. [16] 杨高朝, 王庆, 蔚保国, 等. 基于抗差LM的视觉惯性里程计与伪卫星混合高精度室内定位[J]. 测绘学报, 2022, 51(1): 18-30. DOI: 10.11947/j.AGCS.2022.20200251. YANG Gaochao, WANG Qing, YU Baoguo, et al. High-precision indoor positioning based on robust LM visual inertial odometer and pseudosatellite[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1): 18-30. DOI: 10.11947/j.AGCS.2022.20200251. [17] 陈锐志, 郭光毅, 叶锋, 等. 智能手机音频信号与MEMS传感器的紧耦合室内定位方法[J]. 测绘学报, 2021, 50(2): 143-152. DOI: 10.11947/j.AGCS.2021.20200551. CHEN Ruizhi, GUO Guangyi, YE Feng, et al. Tightly-coupled integration of acoustic signal and MEMS sensors on smartphones for indoor positioning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(2): 143-152. DOI: 10.11947/j.AGCS.2021.20200551. [18] 邹蓉, 孙付平, 王啸, 等. 地球参考框架的发展现状和未来展望[J]. 中国地震, 2020, 36(4): 684-692. ZOU Rong, SUN Fuping, WANG Xiao, et al. Development status and prospects of the geodetic terrestrial reference frame[J]. Earthquake Research in China, 2020, 36(4): 684-692. [19] LIANG Wei, LI Jiancheng, XU Xinyu, et al. A high-resolution Earth's gravity field model SGG-UGM-2 from GOCE, GRACE, satellite altimetry, and EGM2008[J]. Engineering, 2020, 6(8): 860-878. [20] ZHOU Hao, ZHOU Zebing, LUO Zhicai. A new hybrid processing strategy to improve temporal gravity field solution[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(8): 9415-9432. [21] JIANG Tao, DANG Yamin, ZHANG Chuanyin. Gravimetric geoid modeling from the combination of satellite gravity model, terrestrial and airborne gravity data: a case study in the mountainous area, Colorado[J]. Earth, Planets and Space, 2020, 72(1): 1-15. [22] 蒋涛, 党亚民, 郭春喜, 等. 国际高程参考系统在珠峰地区的实现[J]. 测绘学报, 2022, 51(8): 1757-1767. DOI: 10.11947/j.AGCS.2022.20210468. JIANG Tao, DANG Yamin, GUO Chunxi, et al. Realization of the international height reference system in the region of Mount Qomolangma[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(8): 1757-1767. DOI: 10.11947/j.AGCS.2022.20210468. [23] 王文利, 郭春喜, 丁黎, 等. 全国一等水准点高程近20年变化分析[J]. 测绘学报, 2019, 48(1): 1-8. DOI: 10.11947/j.AGCS.2019.20170589. WANG Wenli, GUO Chunxi, DING Li, et al. Elevation change analysis of the national first order leveling points in recent 20 years[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1): 1-8. DOI: 10.11947/j.AGCS.2019.20170589. [24] 郭春喜, 郭鑫伟, 聂建亮, 等. 利用GNSS水准成果融合构建中国大陆垂直运动模型[J]. 武汉大学学报(信息科学版), 2023, 48(4): 579-586. GUO Chunxi, GUO Xinwei, NIE Jianliang, et al. Establishment of vertical movement model of Chinese mainland by fusion result of leveling and GNSS[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 579-586. [25] 杨元喜,杨诚,任夏.PNT智能服务[J].测绘学报,2021,50(8):1006-1012. DOI: 10.11947/j.AGCS.2021.20210051. YANG Yuanxi, YANG Cheng, REN Xia. PNT intelligent service[J]. Acta Geodaetica et Cartograph Sinica,2021,50(8):1006-1012. DOI: 10.11947/j.AGCS.2021.20210051. [26] HAN Kun, WU Dewei, LAI Lei. Model of generating grid cell based on difference Hebbian learning in brain-inspired navigation[J]. Journal of Systems Engineering and Electronics, 2020, 42: 674-679. [27] 朱新慧, 傅彦博, 蔡富, 等. GNSS测站坐标非线性变化影响机制的研究[J]. 地球物理学进展, 2020, 35(1): 79-85. ZHU Xinhui, FU Yanbo, CAI Fu, et al. Research on the influence mechanism of the nonlinear variations of GNSS stations' coordinates[J]. Progress in Geophysics, 2020, 35(1): 79-85. [28] 贾彦锋, 朱新慧, 孙付平, 等. GNSS垂向坐标时间序列周年项振幅的时变特征及成因分析[J]. 地球物理学报, 2023, 66(1): 162-172. JIA Yanfeng, ZHU Xinhui, SUN Fuping, et al. Time-varying characteristics and cause analysis of annual amplitudes of GNSS vertical coordinate time series[J]. Chinese Journal of Geophysics, 2023, 66(1): 162-172. [29] 蒋光伟, 程传录, 陈雄川, 等. 基于BDS-3的定位性能与区域参考框架维持分析[J]. 地球物理学进展, 2021, 36(3): 887-893. JIANG Guangwei, CHENG Chuanlu, CHEN Xiongchuan, et al. Positioning performance analysis and maintenance of regional reference frame based on BDS-3[J]. Progress in Geophysics, 2021, 36(3): 887-893. [30] 党亚民, 程传录, 杨强, 等. 珠峰及周边地区强震影响垂直形变特征研究[J]. 武汉大学学报(信息科学版), 2022, 47(1): 26-35. DANG Yamin, CHENG Chuanlu, YANG Qiang, et al. Vertical deformation characteristics affected by strong earthquakes in mount Qomolangma and surrounding areas[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 26-35. [31] 党亚民, 杨强, 王伟, 等. 基于块体模型的青藏高原及邻区地壳三维构造形变分析[J]. 测绘学报, 2022, 51(7): 1192-1205. DOI: 10.11947/j.AGCS.2022.20220123. DANG Yamin, YANG Qiang, WANG Wei, et al. Analysis on 3D crustal deformation of Qinghai-Tibet Plateau and its surrounding areas based on block model[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1192-1205. DOI: 10.11947/j.AGCS.2022.20220123. [32] 成英燕, 王虎, 许长辉, 等. 基于多技术全球参考框架的维持及应用分析[J]. 测绘科学, 2019, 44(6): 37-46. CHENG Yingyan, WANG Hu, XU Changhui, et al. Analysis of application and maintenance of multi-technical based global reference frame[J]. Science of Surveying and Mapping, 2019, 44(6): 37-46. [33] CHENG Pengfei, CHENG Yingyan, WANG Xiaoming, et al. Realization of an optimal dynamic geodetic reference frame in China: methodology and applications[J]. Engineering, 2020, 6(8): 879-917. [34] CHENG Pengfei, CHENG Yingyan, WANG Xiaoming, et al. Update China geodetic coordinate frame considering plate motion[J]. Satellite Navigation, 2021, 2(1): 1-12. [35] WANG Hu, REN Yingying, WANG Ahao, et al. Two-decade GNSS observation processing and analysis with the new IGS Repro3 criteria: implications for the refinement of velocity field and deformation field in continental China[J]. Remote Sensing, 2022, 14(15): 3719. [36] 王虎, 任营营, 连丽珍, 等. 大规模GNSS网数据处理一体化方案与中国大陆水平格网速度场模型构建研究[J]. 大地测量与地球动力学, 2020, 40(9): 881-887, 897. WANG Hu, REN Yingying, LIAN Lizhen, et al. Research on an integrational scheme of large-scale GNSS network data processing and establishment of the horizontal grid velocity field model in Chinese mainland[J]. Journal of Geodesy and Geodynamics, 2020, 40(9): 881-887, 897. [37] REN Yingying, WANG Hu, LIAN Lizhen, et al. A method based on MTLS and ILSP for GNSS coordinate time series analysis with missing data[J]. Advances in Space Research, 2021, 68(9): 3546-3561. [38] REN Yingying, LIAN Lizhen, WANG Jiexian. Analysis of seismic deformation from global three-decade GNSS displacements: implications for a three-dimensional earth GNSS velocity field[J]. Remote Sensing, 2021, 13(17): 3369. [39] WANG Hu, REN Yingying, HOU Yangfei, et al. The refinement of reprocessed GNSS three-decade displacement trajectory model with spectral analysis and hypothesis test[J]. Advances in Space Research, 2022, 70(7): 1810-1829. [40] 任营营, 王解先, 王虎, 等. 基于局部无缝Delaunay三角网反距离加权法构建中国大陆速度场[J]. 武汉大学学报(信息科学版), 2021, 46(7): 1071-1080. REN Yingying, WANG Jiexian, WANG Hu, et al. Construction of velocity field in Chinese mainland based on local seamless delaunay triangulation with inverse distance weighting method[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7): 1071-1080. [41] 任营营, 王虎, 王解先, 等. 基于K-Means++的省内子块体划分及中国大陆水平相对运动速度场模型的建立与分析[J]. 地球物理学报, 2020, 63(7): 2516-2533. REN Yingying, WANG Hu, WANG Jiexian, et al. The sub-block demarcation with K-Means++ in each province's interior and establishment analysis of the relative horizontal velocity field model in China's mainland[J]. Chinese Journal of Geophysics, 2020, 63(7): 2516-2533. [42] REN Yingying, WANG Hu, HOU Yangfei, et al. The preliminary realization and evaluation of CTRF2020 based on new BDS3 technology[M]//Lecture Notes in Electrical Engineering. Singapore: Springer Nature Singapore, 2022: 57-69. [43] 公海燕. 中国移动发布全球最大的“5G+北斗高精定位”: 访中移(上海)产业研究院副总经理黄刚[J]. 中国测绘, 2020(11): 60-63. GONG Haiyan. China mobile releases the world's largest “5G+BeiDou high precision positioning”—interview with HUANG Gang, deputy general manager of China mobile (Shanghai) industrial research institute[J]. China Surveying and Mapping, 2020(11): 60-63. [44] 卞鸿巍, 许江宁, 何泓洋, 等. 国家综合PNT体系弹性概念[J]. 武汉大学学报(信息科学版), 2021, 46(9): 1265-1272. BIAN Hongwei, XU Jiangning, HE Hongyang, et al. The concept of resilience of national comprehensive PNT system[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1265-1272. [45] YANG Yuanxi, QIN Xianping. Resilient observation models for seafloor geodetic positioning[J]. Journal of Geodesy,2021,95:79. [46] WANG Junting, XU Tianhe, LIU Yangfan, et al. Augmented underwater acoustic navigation with systematic error modeling based on seafloor datum network[J]. Marine Geodesy, 2023, 46(2): 129-148. [47] WANG Junting, XU Tianhe, ZHANG Bingsheng, et al. Underwater acoustic positioning based on the robust zero-difference Kalman filter[J]. Journal of Marine Science and Technology, 2021, 26(3): 734-749. [48] 孟骞, 姜颖颖, 王立辉, 等. 城市峡谷环境多源导航信息弹性融合定位方法[J]. 导航与控制, 2023, 22(2): 16-22. MENG Qian, JIANG Yingying, WANG Lihui, et al. Multi-source navigation information resilient fusion method under urban canyon scenario[J]. Navigation and Control, 2023, 22(2): 16-22. [49] 李彤, 张会兵, 刘丁柯, 等. 面向城市道路的多传感器融合定位导航技术[J]. 测绘通报, 2019(11): 44-50. LI Tong, ZHANG Huibing, LIU Dingke, et al. Multi-sensor fusion for navigation technology and trajectory prediction under urban roads[J]. Bulletin of Surveying and Mapping, 2019(11): 44-50. [50] SUN Heping, CUI Xiaoming, XU Jianqiao, et al. Progress of research on the Earth's gravity tides and its application in geodynamics in China[J]. Pure and Applied Geophysics, 2023, 180(2): 573-589. [51] YUAN Yuan, GAO Jinyao, WU Zhaocai, et al. Performance estimate of some prototypes of inertial platform and strapdown marine gravimeters[J]. Earth, Planets and Space, 2020, 72(1): 1-11. [52] 程冰, 周寅, 陈佩军, 等. 船载系泊状态下基于原子重力仪的绝对重力测量[J]. 物理学报, 2021, 70(4): 040304. CHENG Bing, ZHOU Yin, CHEN Peijun, et al. Absolute gravity measurement based on atomic gravimeter under mooring state of a ship[J]. Acta Physica Sinica, 2021, 70(4): 040304. [53] 车浩, 李安, 方杰, 等. 基于冷原子重力仪的船载动态绝对重力测量实验研究[J]. 物理学报, 2022, 71(11): 113701. CHE Hao, LI An, FANG Jie, et al. Ship-borne dynamic absolute gravity measurement based on cold atom gravimeter[J]. Acta Physica Sinica, 2022, 71(11): 113701. [54] CHEN Qiujie, SHEN Yunzhong, KUSCHE J, et al. High-resolution GRACE monthly spherical harmonic solutions[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(1): e2019JB018892. [55] ZHONG Bo, LI Xianpao, CHEN Jianli, et al. WHU-GRACE-GPD01s: a series of constrained monthly gravity field solutions derived from GRACE-based geopotential differences[J]. Earth and Space Science, 2023, 10(4): e2022EA002699. [56] YU Biao, YOU W, FAN Dongming, et al. A comparison of GRACE temporal gravity field models recovered with different processing details[J]. Geophysical Journal International, 2021, 227(2): 1392-1417. [57] SU Y, LI J C, ZOU X C. SWPU-GRACE2021: a new temporal gravity model from GRACE[J]. GFZ Data Services, 2022, 10: e001. DOI: 10.5880/icgem.2022.001. [58] WAN Xiaoyun, HAO Ruijie, JIA Yongjun, et al. Global marine gravity anomalies from multi-satellite altimeter data[J]. Earth, Planets and Space, 2022, 74: 1-14. [59] HAO Ruijie, WAN Xiaoyun, ANNAN R F. Enhanced short-wavelength marine gravity anomaly using depth data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-9. [60] ZHANG Shengjun, ZHOU Runsheng, JIA Yongjun, et al. Performance of HaiYang-2 altimetric data in marine gravity research and a new global marine gravity model NSOAS22[J]. Remote Sensing, 2022, 14(17): 4322. [61] JIN Taoyong, ZHOU Mao, ZHANG Huan, et al. Analysis of vertical deflections determined from one cycle of simulated SWOT wide-swath altimeter data[J]. Journal of Geodesy, 2022, 96(4): 1-13. [62] YU Daocheng, HWANG C, ANDERSEN O B, et al. Gravity recovery from SWOT altimetry using geoid height and geoid gradient[J]. Remote Sensing of Environment, 2021, 265: 112650. [63] ZHU Chengcheng, GUO Jinyun, GAO Jinyao, et al. Marine gravity determined from multi-satellite GM/ERM altimeter data over the South China Sea: SCSGA V1.0[J]. Journal of Geodesy, 2020, 94: 1-16. [64] 胡敏章, 张胜军, 金涛勇, 等. 新一代全球海底地形模型BATW HU2020[J]. 测绘学报, 2020, 49(8): 939-954. DOI: 10.11947/j.AGCS.2020.20190526. HU Minzhang, ZHANG Shengjun, JIN Taoyong, et al. A new generation of global bathymetry model BATW HU2020[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(8): 939-954. DOI: 10.11947/j.AGCS.2020.20190526. [65] WANG Yanming, SÁNCHEZ L, ÅGREN J, et al. Colorado geoid computation experiment: overview and summary[J]. Journal of Geodesy, 2021, 95(12): 1-21. [66] 党亚民, 蒋涛, 陈俊勇. 全球高程基准研究进展[J]. 武汉大学学报(信息科学版), 2022, 47(10): 1576-1586. DANG Yamin, JIANG Tao, CHEN Junyong. Review on research progress of the global height datum[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1576-1586. [67] DANG Yamin, JIANG Tao, GUO Chunxi, et al. Determining the new height of Mount Qomolangma based on the international height reference system[J/OL]. Geo-Spatial Information Science, 2023 [2023-06-01]. https://doi.org/10.1080/10095020.2022.2128901. [68] 赫林, 褚永海, 徐新禹, 等. GRACE/GOCE扩展重力场模型确定我国1985高程基准重力位的精度分析[J]. 地球物理学报, 2019, 62(6): 2016-2026. HE Lin, CHU Yonghai, XU Xinyu, et al. Evaluation of the GRACE/GOCE global geopotential model on estimation of the geopotential value for the China vertical datum of 1985[J]. Chinese Journal of Geophysics, 2019, 62(6): 2016-2026. [69] 冯义楷, 杨龙, 付延光, 等. 山东省沿海高程/深度基准转换模型及其精度评估[J]. 海洋科学进展, 2023, 41(3): 488-497. FENG Yikai, YANG Long, FU Yanguang, et al. Accuracy evaluation of the coastal vertical datum transformation model in Shandong province[J]. Advances in Marine Science, 2023, 41(3): 488-497. [70] 魏子卿. 第二大地边值问题引论[J]. 测绘学报, 2022, 51(6): 797-803. DOI: 10.11947/j.AGCS.2022.20220067. WEI Ziqing. Introduction to the second geodetic boundary value problem[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 797-803. DOI: 10.11947/j.AGCS.2022.20220067. [71] SHEN Wenbin, SUN Xiao, CAI Chenghui, et al. Geopotential determination based on a direct clock comparison using two-way satellite time and frequency transfer[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2019, 30(1): 21-31. [72] LI Xinxing, LI Jiancheng, TONG Xiaochong, et al. The employment of quasi-hexagonal grids in spherical harmonic analysis and synthesis for the Earth's gravity field[J]. Journal of Geodesy, 2022, 96(11): 1-21. [73] 李新星, 李建成, 刘晓刚, 等. 球谐旋转变换结合非全次Legendre方法的局部六边形网格重力场球谐综合[J]. 地球物理学报, 2021, 64(11): 3933-3947. LI Xinxing, LI Jiancheng, LIU Xiaogang, et al. Spherical harmonic synthesis of local hexagonal grid point gravity anomalies with non- full-order Legendre method combined with spherical harmonic rotation transformation[J]. Chinese Journal of Geophysics, 2021, 64(11): 3933-3947. [74] YANG Meng, HIRT C, WU Bin, et al. Residual terrain modelling: the harmonic correction for geoid heights[J]. Surveys in Geophysics, 2022, 43(4): 1201-1231. [75] SUN Rong. New algorithms for spherical harmonic analysis of area mean values over blocks delineated by equiangular and Gaussian grids[J]. Journal of Geodesy, 2021, 95(5): 1-21. [76] 黄谟涛, 陈欣, 邓凯亮, 等. 补偿海空重力测量动态效应剩余影响的通用模型[J]. 测绘学报, 2020, 49(2): 135-146. DOI: 10.11947/j.AGCS.2020.20190010. HUANG Motao, CHEN Xin, DENG Kailiang, et al. A general model for compensating remainder dynamic environment effect on marine and airborne gravimetry[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(2): 135-146. DOI: 10.11947/j.AGCS.2020.20190010. [77] 黄谟涛, 邓凯亮, 吴太旗, 等. 重力异常垂向梯度严密改化模型及应用[J]. 地球物理学报, 2022, 65(12): 4616-4627. HUANG Motao, DENG Kailiang, WU Taiqi, et al. A rigorous modification model and its application for computing the vertical gradient of gravity anomaly[J]. Chinese Journal of Geophysics, 2022, 65(12): 4616-4627. [78] 中国测绘科学研究院. 地球物理大地测量大型科学计算平台[EB/OL]. [2023-08-01]. https://www.zcyphygeodesy.com/. Chinese Academy of Surveying and Mapping. Scientific computation platform for geophysical geodesy [EB/OL]. [2023-08-01]. https://www.zcyphygeodesy.com/. [79] GUO Jing, WANG Chen, CHEN Guo, et al. BDS-3 precise orbit and clock solution at Wuhan University: status and improvement[J]. Journal of Geodesy, 2023, 97: 1-17. [80] WANG Chen, GUO Jing, ZHAO Qile, et al. Empirically derived model of solar radiation pressure for BeiDou GEO satellites[J]. Journal of Geodesy, 2019, 93(6): 791-807. [81] YANG Chao, GUO Jing, ZHAO Qile. Yaw attitudes for BDS-3 IGSO and MEO satellites: estimation,validation and modeling with intersatellite link observations[J]. Journal of Geodesy, 2023, 97(1): 1-15. [82] ZHAO Qile, WANGYintong, GU Shengfeng, et al. Refining ionospheric delay modeling for undifferenced and uncombined GNSS data processing[J]. Journal of Geodesy, 2019, 93(4): 545-560. [83] ZHANG Qiang, ZHAO Qile. Analysis of the data processing strategies of spherical harmonic expansion model on global ionosphere mapping for moderate solar activity[J]. Advances in Space Research, 2019, 63(3): 1214-1226. [84] SHI C, GUO S, GU S, et al. Multi-GNSS satellite clock estimation constrained with oscillator noise model in the existence of data discontinuity[J]. Journal of Geodesy, 2018, 93: 515-528. [85] ZHANG Zheng, LOU Yidong, ZHENG Fu, et al. ON GLONASS pseudo-range inter-frequency bias solution with ionospheric delay modeling and the undifferenced uncombined PPP[J]. Journal of Geodesy, 2021, 95(3): 1-29. [86] GENG Jianghui, CHEN Xingyu, PAN Yuanxin, et al. PRIDE PPP-AR: an open-source software for GPS PPP ambiguity resolution[J]. GPS Solutions, 2019, 23(4): 1-10. [87] LIU Teng, ZHANG Baocheng, YUAN Yunbin, et al. Multi-GNSS triple-frequency differential code bias (DCB) determination with precise point positioning (PPP)[J]. Journal of Geodesy, 2019, 93(5): 765-784. [88] ZHAO Chuanbao, ZHANG Baocheng, ZHANG Xiao. SUPR-EME: an open-source single-frequency uncombined precise point positioning software[J]. GPS Solutions, 2021, 25(3): 1-8. [89] ZHANG Baocheng, ZHAO Chuanbao, ODOLINSKI R, et al. Functional model modification of precise point positioning considering the time-varying code biases of a receiver[J]. Satellite Navigation, 2021, 2(1): 1-10. [90] HOU P, ZHANG B, YASYUKEVICH Y V, et al.Multi-frequency phase-only PPP-RTK model applied to BeiDou data[J]. GPS Solutions, 2022, 26(3): 76. [91] ZHANG Baocheng, HOU Pengyu, ZHA Jiuping, et al. Integer-estimable FDMA model as an enabler of GLONASS PPP-RTK[J]. Journal of Geodesy, 2021, 95(8): 1-21. [92] ZHANG Baocheng, HOU P, ZHA Jiuping, et al. PPP-RTK functional models for mulated with undifferenced and uncombined GNSS observations[J]. Satellite Navigation, 2022, 3: 1-15. [93] ZHA Jiuping, ZHANG Baocheng, LIU Teng, et al. Ionosphere-weighted undifferenced and uncombined PPP-RTK: theoretical models and experimental results[J]. GPS Solutions, 2021, 25(4): 1-12. [94] ZHANG B, HOU P, ODOLINSKI R. PPP-RTK: from common-view to all-in-view GNSS networks[J]. Journal of Geodesy, 2022, 96(12): 102. [95] HOU P, ZHANG B. Decentralized GNSS PPP-RTK[J]. Journal of Geodesy, 2023, 97(7): 72. [96] YUAN Yunbin, WANG Ningbo, LI Zishen, et al. The BeiDou global broadcast ionospheric delay correction model (BDGIM) and its preliminary performance evaluation results[J]. Navigation, 2019, 66(1): 55-69. [97] WANG Ningbo, LI Zishen, YUAN Yunbin, et al. BeiDou global ionospheric delay correction model (BDGIM): performance analysis during different levels of solar conditions[J]. GPS Solutions, 2021, 25(3): 1-13. [98] LI Wang, ZHAO Dongsheng, HE Changyong, et al. Application of a multi-layer artificial neural network in a 3-D global electron density model using the long-term observations of COSMIC, Fengyun-3C, and digisonde[J]. Space Weather, 2021, 19(3):e2020SW002605. [99] REN Xiaodong, CHEN Jun, ZHANG Xiaohong, et al. Mapping topside ionospheric vertical electron content from multiple LEO satellites at different orbital altitudes[J]. Journal of Geodesy, 2020, 94(9): 1-17. [100] LI Wang, ZHAO Dongsheng, HE Changyong, et al. Spatial-temporal behaviors of large-scale ionospheric perturbations during severe geomagnetic storms on September 7-8 2017 using the GNSS, SWARM and TIE-GCM techniques[J]. Journal of Geophysical Research: Space Physics, 2022, 127(3): e2021JA029830. |