[1] 张毅, 姚丹亚, 李力, 等. 智能车路协同系统关键技术与应用[J]. 交通运输系统工程与信息, 2021, 21(5): 40-51. ZHANG Yi, YAO Danya, LI Li, et al. Technologies and applications for intelligent vehicle-infrastructure cooperation systems[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(5): 40-51. [2] OU C H. A roadside unit-based localization scheme for vehicular ad hoc networks[J]. International Journal of Communication Systems, 2014, 27(1): 135-150. [3] MA Sugang, WEN Fuxi, ZHAO Xiangmo, et al. An efficient V2X based vehicle localization using single RSU and single receiver[J]. IEEE Access, 2019, 7: 46114-46121. [4] DONG Zhi, YAO Bobin. Angle-awareness based joint cooperative positioning and warning for intelligent transportation systems[J]. Sensors, 2020, 20(20): 5818. [5] FASCISTA A, CICCARESE G, COLUCCIA A, et al. A localization algorithm based on V2I communications and AOA estimation[J]. IEEE Signal Processing Letters, 2017, 24(1): 126-130. [6] 邱怡飞, 吕鹏, 刘晓凯, 等. 基于RSSI的预滤波定位算法研究[J]. 无线电工程, 2021, 51(5): 367-372. QIU Yifei, LÜ Peng, LIU Xiaokai, et al. Research on prefilter location algorithm based on RSSI[J]. Radio Engineering, 2021, 51(5): 367-372. [7] OU C H, WU Bingyi, CAI Lin. GPS-free vehicular localization system using roadside units with directional antennas[J]. Journal of Communications and Networks, 2019, 21(1): 12-24. [8] SANTOS F A, AKABANE A T, YOKOYAMA R S, et al. A roadside unit-based localization scheme to improve positioning for vehicular networks[C]//Proceedings of 2016 Vehicular Technology Conference. Montreal: IEEE, 2016: 1-5. [9] YU Biao, DONG Lin, XUE Deyi, et al. A hybrid dead reckoning error correction scheme based on extended Kalman filter and map matching for vehicle self-localization[J]. Journal of Intelligent Transportation Systems, 2019, 23(1): 84-98. [10] 曹立波, 陈峥, 颜凌波, 等. 基于RFID、视觉和UWB的车辆定位系统[J]. 汽车工程, 2017, 39(2): 225-231. CAO Libo, CHEN Zheng, YAN Lingbo, et al. Vehicle positioning system based on RFID, vision and UWB[J]. Automotive Engineering, 2017, 39(2): 225-231. [11] 沈连丰, 张瑞, 朱亚萍, 等. 面向自动驾驶的车辆精确实时定位算法[J]. 电子与信息学报, 2020, 42(1): 28-35. SHEN Lianfeng, ZHANG Rui, ZHU Yaping, et al. High-precision and real-time localization algorithm for automatic driving vehicles[J]. Journal of Electronics & Information Technology, 2020, 42(1): 28-35. [12] 黄文锦, 黄妙华. 激光雷达与路侧摄像头的双层融合协同定位[J]. 浙江大学学报(工学版), 2020, 54(7): 1369-1379. HUANG Wenjin, HUANG Miaohua. Double-layer fusion of LiDAR and roadside camera for cooperative localization[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(7): 1369-1379. [13] MO Yanghui, ZHANG Peilin, CHEN Zhijun, et al. A method of vehicle-infrastructure cooperative perception based vehicle state information fusion using improved Kalman filter[J]. Multimedia Tools and Applications, 2022, 81(4): 4603-4620. [14] MULLER E R, WAHLBERG B, CARLSON R C. Optimal motion planning for automated vehicles with scheduled arrivals at intersections[C]//Proceedings of 2018 European Control Conference. Limassol: IEEE, 2018: 1672-1678. [15] SHEN Minghao, HU Hanyang, SUN Bohua, et al. Heuristics based cooperative planning for highway on-ramp merge[C]//Proceedings of 2018 International Conference on Intelligent Transportation Systems. Maui: IEEE, 2018: 1266-1272. [16] GHORAI P, ESKANDARIAN A, KIM Y K, et al. State estimation and motion prediction of vehicles and vulnerable road users for cooperative autonomous driving: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 16983-17002. [17] GHORAI P, ESKANDARIAN A, KIM Y K. Study the effect of communication delay for perception and collision avoidance in cooperative autonomous driving[C]//Proceedings of 2020 International Mechanical Engineering Congress and Exposition. [S.l.]:American Society of Mechanical Engineers, 2020. [18] SKOG I, HANDEL P. Time synchronization errors in loosely coupled GPS-aided inertial navigation systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1014-1023. [19] AFTATAH M, LAHRECH A, ABOUNADA A, et al. GPS/INS/odometer data fusion for land vehicle localization in GPS denied environment[J]. Modern Applied Science, 2016, 11(1): 62. [20] 刘海波, 杨波, 熊陶, 等. 组合导航中全球定位系统输出延迟补偿方法[J]. 探测与控制学报, 2014, 36(3): 64-68. LIU Haibo, YANG Bo, XIONG Tao, et al. Compensation method for GPS delay in INS/GPS integrated navigation[J]. Journal of Detection & Control, 2014, 36(3): 64-68. [21] 黄显林, 卢鸿谦, 王宇飞. 组合导航非等间隔联合滤波[J]. 中国惯性技术学报, 2002, 10(3): 1-7. HUANG Xianlin, LU Hongqian, WANG Yufei. Incoordinate interval federated filtering of integrated navigation[J]. Journal of Chinese Inertial Technology, 2002, 10(3): 1-7. [22] JOON L, YOU-CHOL L. Transfer alignment considering measurement time delay and ship body flexure[J]. Journal of Mechanical Science and Technology, 2009, 23(1): 195-203. [23] NILSSON J O, SKOG I, HANDEL P. Joint state and measurement time-delay estimation of nonlinear state space systems[C]//Proceedings of 2010 International Conference on Information Science, Signal Processing and their Applications. Kuala Lumpur:IEEE, 2010: 324-328. [24] ZHAO Lin, QIU Haiyang, FENG Yanming. Study of robust H∞ filtering application in loosely coupled INS/GPS system[J]. Mathematical Problems in Engineering, 2014, 2014: 1-10. [25] 朱倚娴, 程向红, 周玲, 等. 组合导航系统中异步多传感器信息融合算法[J]. 东南大学学报(自然科学版), 2018, 48(2): 195-200. ZHU Yixian, CHENG Xianghong, ZHOU Ling, et al. Information fusion algorithm for asynchronous multi-sensors in integrated navigation systems[J]. Journal of Southeast University (Natural Science Edition), 2018, 48(2): 195-200. [26] 王文佳, 孙睿智, 高伟, 等. 基于通信延迟误差补偿的协同导航算法[J]. 火力与指挥控制, 2014, 39(12): 27-30. WANG Wenjia, SUN Ruizhi, GAO Wei, et al. Cooperative navigation based on error compensation of communication delays[J]. Fire Control & Command Control, 2014, 39(12): 27-30. [27] 徐博, 邱立民, 杨建. 多AUV协同导航时间延迟误差机理分析与补偿算法[J]. 控制与决策, 2015, 30(1): 9-16. XU Bo, QIU Limin, YANG Jian. Analysis of time delay and error compensation for multi-AUVs' cooperative navigation approach[J]. Control and Decision, 2015, 30(1): 9-16. [28] 卢健, 陈旭, 罗毛欣, 等. 考虑通信延迟的多自治水下航行器协同定位算法[J]. 控制理论与应用, 2020, 37(9): 2061-2072. LU Jian, CHEN Xu, LUO Maoxin, et al. Cooperative localization algorithm considering of communication delay for autonomous underwater vehicles[J]. Control Theory & Applications, 2020, 37(9): 2061-2072. [29] 邓瑀,马铁锋, 李国强,等. 基于通信延迟的协同导航定位误差补偿算法研究[C]//第四届水下无人系统技术高峰论坛——有人/无人协同技术论文集. 西安:[s.n.], 2021: 46-50. DENG Yu, MA Tiefeng, LI Guoqiang, et al. Research on cooperative navigation error compensation algorithm[C]//Proceedings of 2021 Underwater Unmanned System Technology Summit Forum—Manned/Unmanned Collaboration Technology. Xi'an: [s.n.], 2021: 46-50. [30] 王一文, 钱闯, 唐健, 等. 预建高精度地图的封闭区域UGV自动驾驶导航定位[J]. 测绘通报,2020(1):21-25. WANG Yiwen, QIAN Chuang, TANG Jian, et al. UGV's automated driving navigation and localization in closed areas with pre-established high precision planar map[J]. Bulletin of Surveying and Mapping, 2020(1): 21-25. [31] WU Jianqing, XU Hao, SUN Yuan, et al. Automatic background filtering method for roadside LiDAR data[J]. Transportation Research Record: Journal of the Transportation Research Board, 2018, 2672(45): 106-114. [32] CHEN Biwu, SHI Shuo, SUN Jia, et al. Hyperspectral LiDAR point cloud segmentation based on geometric and spectral information[J]. Optics Express, 2019, 27(17): 24043. [33] INDELMAN V, WILLIAMS S, KAESS M, et al. Information fusion in navigation systems via factor graph based incremental smoothing[J]. Robotics and Autonomous Systems, 2013, 61(8): 721-738. [34] CARLONE L, KIRA Z, BEALL C, et al. Eliminating conditionally independent sets in factor graphs: a unifying perspective based on smart factors[C]//Proceedings of 2014 IEEE International Conference on Robotics and Automation. Hong Kong: IEEE, 2014: 4290-4297. [35] FORSTER C, CARLONE L, DELLAERT F, et al. IMU preintegration on manifold for efficient visual-inertial maximum-a-posteriori estimation[C]//Proceedings of 2015 Robotics: Science and Systems. Rome:[s.n.], 2015: 1-20. [36] KAESS M, RANGANATHAN A, DELLAERT F. ISAM: incremental smoothing and mapping[J]. IEEE Transactions on Robotics, 2008, 24(6): 1365-1378. [37] KAESS M, JOHANNSSON H, ROBERTS R, et al. iSAM2: incremental smoothing and mapping using the Bayes tree[J]. International Journal of Robotics Research, 2012, 31(2): 216-235. [38] DEY K C, RAYAMAJHI A, CHOWDHURY M, et al. Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication in a heterogeneous wireless network—performance evaluation[J]. Transportation Research Part C: Emerging Technologies, 2016, 68: 168-184. |