测绘学报 ›› 2024, Vol. 53 ›› Issue (10): 1881-1895.doi: 10.11947/j.AGCS.2024.20230263.
• 卫星重大测绘工程“陆探一号” • 上一篇
邓云凯(), 王宇, 刘开雨, 欧乃铭, 刘大成, 张衡(), 王吉利
收稿日期:
2023-06-30
发布日期:
2024-11-26
通讯作者:
张衡
E-mail:ykdeng@mail.ie.ac.cn;zhangheng@aircas.ac.cn
作者简介:
邓云凯(1962—),男,研究员,博士生导师,研究方向为星载成像雷达系统设计、成像基础理论及微波遥感理论。E-mail:ykdeng@mail.ie.ac.cn
基金资助:
Yunkai DENG(), Yu WANG, Kaiyu LIU, Naiming OU, Dacheng LIU, Heng ZHANG(), Jili WANG
Received:
2023-06-30
Published:
2024-11-26
Contact:
Heng ZHANG
E-mail:ykdeng@mail.ie.ac.cn;zhangheng@aircas.ac.cn
About author:
DENG Yunkai (1962—), male, researcher, PhD supervisor, majors in the design of spaceborne imaging radar systems, basic imaging theory and microwave remote sensing theory research. E-mail: ykdeng@mail.ie.ac.cn
Supported by:
摘要:
陆探一号是我国首个采用差分干涉测量技术实现地表形变监测应用的合成孔径雷达(SAR)卫星星座,其01组双星分别于2022年1月26日和2022年2月27日成功发射并在轨运行。双星在轨后具有双基编队干涉和双星组网两种模式。在双星干涉成像模式下,利用双基InSAR条带模式获取全国高精度DEM;在双星组网成像模式下,双星同轨道间隔180°在轨稳定运行,重访周期由8 d下降至4 d,获取时序相干数据,具备高精度地表形变监测的能力。此外,陆探一号SAR系统具备多模式极化优势,可获取单航过多极化InSAR、混合极化SAR数据,可用于林业、国土资源调查及灾害监测等。本文对陆探一号SAR载荷的关键技术,包括相位同步、模糊抑制与系统定标等进行系统性阐述和分析。陆探一号SAR载荷实现的最高分辨率为3 m,最大幅宽可达400 km,同时干涉模式方位模糊度优于-20 dB,系统性能优良,本文通过地面测试和在轨实测数据对陆探一号多模式成像性能进行验证。
中图分类号:
邓云凯, 王宇, 刘开雨, 欧乃铭, 刘大成, 张衡, 王吉利. 陆探一号卫星SAR载荷关键技术[J]. 测绘学报, 2024, 53(10): 1881-1895.
Yunkai DENG, Yu WANG, Kaiyu LIU, Naiming OU, Dacheng LIU, Heng ZHANG, Jili WANG. Key technologies for spaceborne SAR payload of LuTan-1 satellite system[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1881-1895.
表2
LT-1卫星的多模式极化方式"
成像模式 | 分辨率/幅宽 | 极化方式 |
---|---|---|
条带模式1 | 3 m (A)×3 m (R)/50 km | 条带模式,双/单基成像,方位双通道,单/双/简缩极化 |
条带模式2 | 12 m (A)×12 m (R)/100 km | 条带模式,单基成像,单/双/简缩极化 |
条带模式3 | 3 m (A)×3 m (R)/50 km | 条带模式,单基成像,方位双通道,双/简缩极化 |
条带模式4 | 6 m (A)×6 m (R)/30 km | 条带模式,单基成像,全极化 |
条带模式5 | 24 m (A)×24 m (R)/160 km | 条带模式,单基成像,单/双/简缩极化 |
扫描模式 | 30 m (A)×30 m (R)/400 km | 扫描模式,方位双通道,单/双/简缩极化 |
[1] | ERRICO M D. Distributed space missions for earth system monitorin[M]. New York: Springer, 2013. |
[2] | ELLIOTT J R, WALTERS R J, WRIGHT T J. The role of space-based observation in understanding and responding to active tectonics and earthquakes[J]. Nature Communications, 2016, 7:13844. |
[3] | SIKANETA I, GIERULL C H, CERUTTI-MAORI D. Optimum signal processing for multichannel SAR: with application to high-resolution wide-swath imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10):6095-6109. |
[4] | KRIEGER G, GEBERT N, MOREIRA A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4):260-264. |
[5] | 邓云凯, 禹卫东, 张衡, 等. 未来星载SAR技术发展趋势[J]. 雷达学报, 2020, 9(1):1-33. |
DENG Yunkai, YU Weidong, ZHANG Heng, et al. Forthcoming spaceborne SAR development[J]. Journal of Radars, 2020, 9(1):1-33. | |
[6] | 邓云凯, 赵凤军, 王宇. 星载SAR技术的发展趋势及应用浅析[J]. 雷达学报, 2012, 1(1):1-10. |
DENG Yunkai, ZHAO Fengjun, WANG Yu. Brief analysis on the development and application of spaceborne SAR[J]. Journal of Radars, 2012, 1(1):1-10. | |
[7] | GULIAEV R, CAZCARRA-BES V, PARDINI M, et al. Forest height estimation by means of TanDEM-X InSAR and waveform LiDAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:3084-3094. |
[8] | MARTONE M, RIZZOLI P, WECKLICH C, et al. The global forest/non-forest map from TanDEM-X interferometric SAR data[J]. Remote Sensing of Environment, 2018, 205:352-373. |
[9] | FERRAIUOLO G, MEGLIO F, PASCAZIO V, et al. DEM reconstruction accuracy in multichannel SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1):191-201. |
[10] | LACHAISE M, FRITZ T, BAMLER R. The dual-baseline phase unwrapping correction framework for the TanDEM-X mission part 1: theoretical description and algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2):780-798. |
[11] |
李涛, 唐新明, 李世金, 等. L波段差分干涉SAR卫星基础形变产品分类[J]. 测绘学报, 2023, 52(5):769-779. DOI:.
doi: 10.11947/j.AGCS.2023.20220050 |
LI Tao, TANG Xinming, LI Shijin, et al. Classification of basic deformation products of L-band differential interferometric SAR satellite[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5):769-779. DOI:.
doi: 10.11947/j.AGCS.2023.20220050 |
|
[12] | ASKNE J I H, DAMMERT P B G, ULANDER L M H, et al. C-band repeat-pass interferometric SAR observations of the forest[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1):25-35. |
[13] | HAGBERG J O, ULANDER L M H, ASKNE J. Repeat-pass SAR interferometry over forested terrain[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2):331-340. |
[14] | STROZZI T, WEGMULLER U, WERNER C L, et al. JERS SAR interferometry for land subsidence monitoring[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(7):1702-1708. |
[15] | FERNANDEZ J, PRIETO J F, ESCAYO J, et al. Modeling the two- and three-dimensional displacement field in Lorca, Spain, subsidence and the global implications[J]. Scientific Reports, 2018, 8(1):14782. |
[16] | ZHANG Bowen, WANG R, DENG Yunkai, et al. Mapping the Yellow River Delta land subsidence with multitemporal SAR interferometry by exploiting both persistent and distributed scatterers[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 148:157-173. |
[17] | WANG Yingjie, DENG Yunkai, WANG R, et al. Adaptive multilooking based on complex patch for multitemporal interferometry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3):907-918. |
[18] | WANG Yingjie, DENG Yunkai, FEI Wenbo, et al. Modified statistically homogeneous pixels' selection with multitemporal SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12):1930-1934. |
[19] | JIA Hongying, WANG Yingjie, GE Daqing, et al. Improved offset trackingfor predisaster deformation monitoring of the 2018 Jinsha River landslide (Tibet, China)[J]. Remote Sensing of Environment, 2020, 247:111899. |
[20] | JIA Hongying, WANG Yingjie, GE Daqing, et al. InSAR study of landslides: early detection, three-dimensional, and long-term surface displacement estimation—a case of Xiaojiang River Basin, China[J]. Remote Sensing, 2022, 14(7):1759. |
[21] | WANG Jili, DENG Yunkai, WANG R, et al. A small-baseline InSAR inversion algorithm combining a smoothing constraint and L1_norm minimization[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(7):1061-1065. |
[22] | KRIEGER G, YOUNIS M. Impact of oscillator noise in bistatic and multistatic SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(3):424-428. |
[23] | KRIEGER G, HAJNSEK I, PAPATHANASSIOU K P, et al. Interferometric synthetic aperture radar (SAR) missions employing formation flying[J]. Proceedings of the IEEE, 2010, 98(5):816-843. |
[24] | JIN Guodong, LIU Kaiyu, LIU Dacheng, et al. An advanced phase synchronization scheme for LT-1[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3):1735-1746. |
[25] | VILLANO M, KRIEGER G, MOREIRA A. New insights into ambiguities in quad-Pol SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6):3287-3308. |
[26] | CLOUDE S R. A general elliptical formulation of hybrid-POLSAR system ambiguities[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(7):1066-1069. |
[27] | YOUNIS M, METZIG R, KRIEGER G. Performance prediction of a phase synchronization link for bistatic SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(3):429-433. |
[28] | BRAUTIGAM B, GONZALEZ J H, SCHWERDT M, et al. TerraSAR-X instrument calibration results and extension for TanDEM-X[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2):702-715. |
[29] | PINHEIRO M, RODRIGUEZ-CASSOLA M, PRATS-IRAOLA P, et al. Reconstruction of coherent pairs of synthetic aperture radar data acquired in interrupted mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4):1876-1893. |
[30] | LIANG Da, LIU Kaiyu, YUE Haixia, et al. An advanced non-interrupted synchronization scheme for bistatic synthetic aperture radar[C]//Proceedings of 2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama: IEEE, 2019. |
[31] | LIANG Da, ZHANG Heng, LIU Kaiyu, et al. Phase synchronization techniques for bistatic and multistatic synthetic aperture radar: accounting for frequency offset[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(3):153-167. |
[32] | LIANG Da, ZHANG Heng, LIU Kaiyu, et al. The processing of synchronization in bistatic synthetic aperture radar[C]//Proceedings of 2020 International Radar Symposium. Warsaw: IEEE, 2020. |
[33] | JIAO Yuanbo, LIANG Da, LIU Kaiyu, et al. The synchronization transceiver design and experimental verification for the LuTan-1 SAR satellite[J]. Sensors, 2020, 20(5):1463. |
[34] | LIANG Da, LIU Kaiyu, ZHANG Heng, et al. The processing framework and experimental verification for the noninterrupted synchronization scheme of LuTan-1[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7):5740-5750. |
[35] | LIANG D, ZHANG H, WANG R. An advanced non-interrupted phase synchronization scheme with internal calibration for LT-1[C]//Proceedings of 2021 European Conference on Synthetic Aperture Radar. Leipzig: [s.n.], 2021. |
[36] | KRIEGER G, DE ZAN F. Relativistic effects in bistatic SAR processing and system synchronization[C]//Proceedings of 2012 European Conference on Synthetic Aperture Radar. VDE: [s.n.], 2012. |
[37] | KRIEGER G, DE ZAN F. Relativistic effects in bistatic synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2):1480-1488. |
[38] | CAI Yonghua, LI Junfeng, YANG Qingyue, et al. First demonstration of RFI mitigation in the phase synchronization of LT-1 bistatic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:3310613. |
[39] | LEE J, POTTIER R. Polarimetric radar imaging from basics to applications[M]. New York: CRC Press, 2008. |
[40] | ZHAO Pengfei, DENG Yunkai, WANG Wei, et al. Ambiguity suppression based on joint optimization for multichannel hybrid and ±π/4 quad-Pol SAR systems[J]. Remote Sensing, 2021, 13(10):1907. |
[41] | LIU Mingliang, DENG Yunkai, WANG Donghong, et al. Unified classification framework for multipolarization and dual-frequency SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:3242695. |
[42] | YANG Ce, OU Naiming, LIU Dacheng, et al. Suppressing range ambiguity by pattern synthesis for SAR via semidefinite relaxation[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5. |
[43] | YANG Ce, OU Naiming, DENG Yunkai, et al. Pattern synthesis algorithm for range ambiguity suppression in the LT-1 mission via sequential convex optimizations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-13. |
[44] | RANEY R K. Hybrid-quad-Pol SAR[C]//Proceedings of 2008 IEEE International Geoscience and Remote Sensing Symposium. Boston: IEEE, 2008. |
[45] | RANEY R K, FREEMAN A, JORDAN R L. Improved range ambiguity performance in quad-Pol SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2):349-356. |
[1] | 唐新明, 李涛, 张祥, 周晓青, 禄競, 张雪飞. L波段差分干涉SAR卫星在轨应用关键参数测试分析[J]. 测绘学报, 2024, 53(10): 1863-1872. |
[2] | 李涛, 唐新明, 李世金, 周晓青, 张祥, 许耀宗. L波段差分干涉SAR卫星基础形变产品分类[J]. 测绘学报, 2023, 52(5): 769-779. |
[3] | 楼良盛, 刘志铭, 张昊, 钱方明, 张笑微. 天绘二号卫星关键技术[J]. 测绘学报, 2022, 51(12): 2403-2416. |
[4] | 赵泉华, 郭世波, 李晓丽, 李玉. 利用目标分解特征的全极化SAR海冰分类[J]. 测绘学报, 2018, 47(12): 1609-1620. |
[5] | 张海波, 汪长城, 朱建军, 付海强. 利用ESAR极化数据的复杂地形区森林地上生物量估算[J]. 测绘学报, 2018, 47(10): 1353-1362. |
[6] | 刘修国, 姜萍, 陈启浩, 陈奇. 利用改进三分量分解与Wishart分类的极化SAR图像建筑提取[J]. 测绘学报, 2015, 44(2): 206-213. |
[7] | 郎丰铠 杨杰 李德仁. 极化SAR图像自适应增强Lee滤波算法[J]. 测绘学报, 2014, 43(7): 690-697. |
[8] | 郎丰铠,杨杰,赵伶俐,张兢,李德仁. 基于Freeman散射熵和各向异性度的极化SAR影像分类算法研究[J]. 测绘学报, 2012, 41(4): 0-590. |
[9] | 张中山,余洁,燕琴,孟云闪,赵争. 基于核独立成分分析的极化SAR图像相干斑抑制[J]. 测绘学报, 2011, 40(3): 289-295. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||