测绘学报 ›› 2024, Vol. 53 ›› Issue (10): 1930-1941.doi: 10.11947/j.AGCS.2024.20230572.
• 卫星重大测绘工程“陆探一号” • 上一篇
许兵1,(), 朱焱1(), 李志伟1, 易辉伟1, 胡妙文1, 陈琦2,3, 韩焜1, 杜洵1
收稿日期:
2023-12-13
发布日期:
2024-11-26
通讯作者:
朱焱
E-mail:xubing@csu.edu.cn;yanzhu@csu.edu.cn
作者简介:
许兵(1986—),男,博士,副教授,研究方向为InSAR技术的形变监测理论与方法。E-mail:xubing@csu.edu.cn
基金资助:
Bing XU1,(), Yan ZHU1(), Zhiwei LI1, Huiwei YI1, Miaowen HU1, Qi CHEN2,3, Kun HAN1, Xun DU1
Received:
2023-12-13
Published:
2024-11-26
Contact:
Yan ZHU
E-mail:xubing@csu.edu.cn;yanzhu@csu.edu.cn
About author:
XU Bing (1986—), male, PhD, associate professor, majors in the theoretical and methodological work of deformation monitoring using InSAR technology. E-mail: xubing@csu.edu.cn
Supported by:
摘要:
陆地探测一号01组卫星(LT-1)的发射成功实现了我国L波段干涉SAR卫星“从无到有”的发展。LT-1卫星因空间避障等原因,部分空间基线较长;经过调轨后,空间基线长度控制在400 m以内。为了验证LT-1卫星数据的可用性及精度,本文以山西大同矿区为例,获取了2022年12月23日至2023年5月20日共25景LT-1条带模式影像数据,分别进行差分干涉测量短基线集时序分析(SBAS)技术和永久散射体(PS)技术数据处理。对时序InSAR和GPS站点在SAR卫星视线向上的形变监测结果进行对比分析,二者差异标准差分别为5.7 mm/a(SBAS-InSAR)和3.4 mm/a(PS-InSAR),时间序列均方根误差均小于5 mm,具有高度一致性。研究表明国产LT-1卫星具备高精度的形变监测能力,为国内地形测绘及形变监测提供了可靠的数据保障。
中图分类号:
许兵, 朱焱, 李志伟, 易辉伟, 胡妙文, 陈琦, 韩焜, 杜洵. 国产卫星时序InSAR形变监测精度分析[J]. 测绘学报, 2024, 53(10): 1930-1941.
Bing XU, Yan ZHU, Zhiwei LI, Huiwei YI, Miaowen HU, Qi CHEN, Kun HAN, Xun DU. Analysis of InSAR time-series deformation monitoring accuracy of domestic satellite[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1930-1941.
表1
GPS站点坐标信息"
站点名 | 经度/(°E) | 纬度/(°N) | 站点名 | 经度/(°E) | 纬度/(°N) | 站点名 | 经度/(°E) | 纬度/(°N) |
---|---|---|---|---|---|---|---|---|
GP01 | 112.90 | 39.99 | GP19 | 113.10 | 40.11 | GP37 | 112.88 | 40.00 |
GP02 | 112.90 | 40.03 | GP20 | 112.90 | 40.00 | GP38 | 112.93 | 39.88 |
GP03 | 112.96 | 39.97 | GP21 | 112.91 | 39.99 | GP39 | 113.04 | 40.06 |
GP04 | 112.93 | 39.97 | GP22 | 112.88 | 39.98 | GP40 | 113.07 | 40.09 |
GP05 | 112.88 | 39.97 | GP23 | 112.87 | 40.02 | GP41 | 113.06 | 40.07 |
GP06 | 112.92 | 39.96 | GP24 | 112.99 | 40.00 | GP42 | 112.95 | 39.96 |
GP07 | 112.94 | 39.95 | GP25 | 113.04 | 40.07 | GP43 | 113.12 | 40.08 |
GP08 | 112.93 | 39.95 | GP26 | 113.04 | 40.07 | GP44 | 113.03 | 40.10 |
GP09 | 112.95 | 39.94 | GP27 | 112.91 | 39.96 | GP45 | 113.02 | 40.09 |
GP10 | 113.06 | 40.10 | GP28 | 112.86 | 39.94 | GP46 | 113.04 | 40.07 |
GP11 | 113.05 | 40.09 | GP29 | 112.89 | 39.95 | GP47 | 113.04 | 40.06 |
GP12 | 113.09 | 40.08 | GP30 | 112.87 | 39.93 | GP48 | 113.14 | 40.07 |
GP13 | 112.91 | 40.01 | GP31 | 112.90 | 39.88 | GP49 | 113.09 | 40.05 |
GP14 | 112.90 | 40.05 | GP32 | 112.93 | 39.88 | GP50 | 113.08 | 40.10 |
GP15 | 112.91 | 40.03 | GP33 | 112.86 | 39.92 | GP51 | 113.13 | 40.10 |
GP16 | 112.97 | 40.02 | GP34 | 112.92 | 40.02 | GP52 | 113.11 | 40.09 |
GP17 | 112.94 | 40.01 | GP35 | 112.91 | 40.02 | |||
GP18 | 112.94 | 40.00 | GP36 | 112.92 | 40.01 |
表3
GPS与SBAS-InSAR形变速率对比"
站点名 | GPS | InSAR | 差异 | 站点名 | GPS | InSAR | 差异 | 站点名 | GPS | InSAR | 差异 |
---|---|---|---|---|---|---|---|---|---|---|---|
GP01 | -6.8 | -10.7 | 3.9 | GP19 | -24.6 | -23.8 | -0.8 | GP35 | -3.9 | -2.6 | -1.3 |
GP02 | -5.6 | -6.5 | 0.9 | GP20 | -16.0 | -16.5 | 0.5 | GP36 | -5.7 | -3.6 | -2.1 |
GP04 | -24.5 | -16.6 | -7.9 | GP21 | 10.7 | 10.7 | 0.0 | GP37 | -26.2 | -26.3 | 0.1 |
GP05 | -16.2 | -12.0 | -4.2 | GP22 | -4.5 | -6.3 | 1.8 | GP38 | 8.1 | 6.3 | 1.8 |
GP06 | -39.9 | -36.6 | -3.3 | GP23 | -9.8 | -7.6 | -2.2 | GP39 | -11.3 | -20.3 | 9.0 |
GP08 | -40.9 | -28.9 | -12.0 | GP24 | -22.0 | -16.2 | -5.8 | GP40 | -3.0 | -2.1 | -0.9 |
GP09 | -23.1 | -0.2 | -22.9 | GP25 | -9.5 | -12.3 | 2.8 | GP41 | 16.6 | 21.0 | -4.4 |
GP10 | -115.5 | -120.8 | 5.3 | GP26 | -1.5 | -5.0 | 3.5 | GP42 | -25.2 | -25.1 | -0.1 |
GP11 | -37.5 | -38.1 | 0.6 | GP27 | -66.9 | -63.8 | -3.1 | GP43 | -11.2 | -17.7 | 6.5 |
GP12 | 2.0 | 1.5 | 0.5 | GP28 | -2.1 | -1.1 | -1.0 | GP46 | -20.6 | -21.6 | 1.0 |
GP13 | -3.2 | -7.3 | 4.1 | GP29* | 0.0 | 0.0 | 0.0 | GP47 | -17.2 | -15.6 | -1.6 |
GP14 | 13.1 | 13.2 | -0.1 | GP30 | -11.9 | -12.2 | 0.3 | GP48 | -40.4 | -33.0 | -7.4 |
GP15 | -8.7 | -8.5 | -0.2 | GP31 | -24.6 | -6.6 | -18.0 | GP49 | -4.6 | 2.3 | -6.9 |
GP16 | -28.6 | -15.9 | -12.7 | GP32 | 2.5 | 6.3 | -3.8 | GP50 | -7.2 | -6.0 | -1.2 |
GP17 | -21.5 | -16.1 | -5.4 | GP33 | -1.7 | -2.1 | 0.4 | GP51 | -5.6 | -8.4 | 2.8 |
GP18 | 1.6 | 7.4 | -5.8 | GP34 | 0.5 | 0.1 | 0.4 | GP52 | -7.6 | -8.0 | 0.4 |
表4
GPS与PS-InSAR形变速率对比"
站点名 | GPS | InSAR | 差异 | 站点名 | GPS | InSAR | 差异 |
---|---|---|---|---|---|---|---|
GP01 | -6.8 | -3.5 | -3.3 | GP21 | 10.7 | 9.2 | 1.5 |
GP02 | -5.6 | -5.9 | 0.3 | GP22 | -4.5 | 0.8 | -5.3 |
GP03 | -66.6 | -63.6 | -3 | GP23 | -9.8 | -11.2 | 1.4 |
GP04 | -24.5 | -28.6 | 4.1 | GP24 | -22 | -25.4 | 3.4 |
GP05 | -16.2 | -19 | 2.8 | GP28 | -2.1 | 2.3 | -4.4 |
GP06 | -39.9 | -41.8 | 1.9 | GP29* | 0 | 0 | 0 |
GP08 | -40.9 | -37.3 | -3.6 | GP30 | -11.9 | -15.4 | 3.5 |
GP13 | -3.2 | -0.1 | -3.1 | GP33 | -1.7 | 3.7 | -5.4 |
GP14 | 13.1 | 17.8 | -4.7 | GP34 | 0.5 | 5.4 | -4.9 |
GP15 | -8.7 | -12.9 | 4.2 | GP35 | -3.9 | -1.3 | -2.6 |
GP18 | 1.6 | -1.5 | 3.1 | GP36 | -5.7 | -9 | 3.3 |
GP20 | -16 | -13.9 | -2.1 | GP42 | -25.2 | -27.7 | 2.5 |
表5
GPS与SBAS-InSAR形变序列对比"
站点名 | RMSE | 站点名 | RMSE | 站点名 | RMSE | 站点名 | RMSE | 站点名 | RMSE |
---|---|---|---|---|---|---|---|---|---|
GP01 | 0.7 | GP13 | 1.5 | GP23 | 1.9 | GP33 | 1.5 | GP43 | 1.5 |
GP02 | 0.8 | GP14 | 2.2 | GP24 | 2.1 | GP34 | 1.2 | GP46 | 1.8 |
GP04 | 2.5 | GP15 | 1.1 | GP25 | 1.5 | GP35 | 1.1 | GP47 | 2.0 |
GP05 | 1.3 | GP16 | 3.4 | GP26 | 1.9 | GP36 | 1.2 | GP48 | 1.9 |
GP06 | 1.5 | GP17 | 1.9 | GP27 | 2.9 | GP37 | 2.1 | GP49 | 1.8 |
GP08 | 2.4 | GP18 | 1.4 | GP28 | 1.4 | GP38 | 2.0 | GP50 | 0.9 |
GP09 | 4.3 | GP19 | 1.2 | GP29 | 0.9 | GP39 | 2.9 | GP51 | 1.1 |
GP10 | 3.1 | GP20 | 1.0 | GP30 | 1.9 | GP40 | 0.7 | GP52 | 0.8 |
GP11 | 1.1 | GP21 | 1.8 | GP31 | 2.9 | GP41 | 2.7 | ||
GP12 | 1.2 | GP22 | 1.1 | GP32 | 2.3 | GP42 | 2.1 |
[1] |
李涛, 唐新明, 李世金, 等. L波段差分干涉SAR卫星基础形变产品分类[J]. 测绘学报, 2023, 52(5):769-779. DOI:.
doi: 10.11947/j.AGCS.2023.20220050 |
LI Tao, TANG Xinming, LI Shijin, et al. Classification of basic deformation products of L-band differential interferometric SAR satellite[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5):769-779. DOI:.
doi: 10.11947/j.AGCS.2023.20220050 |
|
[2] | XU Bing, LIU Liqun, LI Zhiwei, et al. Design bistatic interferometric DEM generation algorithm and its theoretical accuracy analysis for LuTan-1 satellites[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1):25-38. |
[3] |
朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10):1717-1733. DOI:.
doi: 10.11947/j.AGCS.2017.20170350 |
ZHU Jianjun, LI Zhiwei, HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1717-1733. DOI:.
doi: 10.11947/j.AGCS.2017.20170350 |
|
[4] |
朱建军, 杨泽发, 李志伟. InSAR矿区地表三维形变监测与预计研究进展[J]. 测绘学报, 2019, 48(2):135-144. DOI:.
doi: 10.11947/j.AGCS.2019.20180188 |
ZHU Jianjun, YANG Zefa, LI Zhiwei. Recent progress in retrieving and predicting mining-induced 3D displacements using InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2):135-144. DOI:.
doi: 10.11947/j.AGCS.2019.20180188 |
|
[5] | 蒋弥, 丁晓利, 何秀凤, 等. 基于快速分布式目标探测的时序雷达干涉测量方法:以Lost Hills油藏区为例[J]. 地球物理学报, 2016, 59(10):3592-3603. |
JIANG Mi, DING Xiaoli, HE Xiufeng, et al. FaSHPS-InSAR technique for distributed scatterers: a case study over the Lost Hills oil field, California[J]. Chinese Journal of Geophysics, 2016, 59(10):3592-3603. | |
[6] | XU Bing, FENG Guangcai, LI Zhiwei, et al. Coastal subsidence monitoring associated with land reclamation using the point target based SBAS-InSAR method: a case study of Shenzhen, China[J]. Remote Sensing, 2016, 8(8):652. |
[7] | XU Yaozong, LI Tao, TANG Xinming, et al. Research on the applicability of DInSAR, stacking-InSAR and SBAS-InSAR for mining region subsidence detection in the Datong coalfield[J]. Remote Sensing, 2022, 14(14):3314. |
[8] | JI Yanan, ZHANG Xiang, LI Tao, et al. Mining deformation monitoring based on Lutan-1 monostatic and bistatic data[J]. Remote Sensing, 2023, 15(24):5668. |
[9] | 吕森. 基于Sentinel-1A与L-SAR卫星对云南昭通地质灾害形变监测的研究[D]. 西安: 长安大学, 2023. |
LÜ Sen. Research on deformation monitoring of geological hazards in Zhaotong, Yunnan province based on Sentinel-1A and L-SAR satellites[D]. Xi'an: Changan University, 2023. | |
[10] |
张庆君. 高分三号卫星总体设计与关键技术[J]. 测绘学报, 2017, 46(3):269-277. DOI:.
doi: 10.11947/j.AGCS.2017.20170049 |
ZHANG Qingjun. System design and key technologies of the GF-3 satellite[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3):269-277. DOI:.
doi: 10.11947/j.AGCS.2017.20170049 |
|
[11] | 李强, 张景发. 高分三号卫星全极化SAR影像九寨沟地震滑坡普查[J]. 遥感学报, 2019, 23(5):883-891. |
LI Qiang, ZHANG Jingfa. Investigation on earthquake-induced landslide in Jiuzhaigou using fully polarimetric GF-3 SAR images[J]. Journal of Remote Sensing, 2019, 23(5):883-891. | |
[12] |
楼良盛, 刘志铭, 张昊, 等. 天绘二号卫星工程设计与实现[J]. 测绘学报, 2020, 49(10):1252-1264. DOI:.
doi: 10.11947/j.AGCS.2020.20200175 |
LOU Liangsheng, LIU Zhiming, ZHANG Hao, et al. TH-2 satellite engineering design and implementation[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10):1252-1264. DOI:.
doi: 10.11947/j.AGCS.2020.20200175 |
|
[13] |
楼良盛, 刘志铭, 张昊, 等. 天绘二号卫星关键技术[J]. 测绘学报, 2022, 51(12):2403-2416. DOI:.
doi: 10.11947/j.AGCS.2022.20210567 |
LOU Liangsheng, LIU Zhiming, ZHANG Hao, et al. Key technologies of TH-2 satellite system[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(12):2403-2416. DOI:.
doi: 10.11947/j.AGCS.2022.20210567 |
|
[14] | LI Tao, TANG Xinming, ZHOU Xiaoqing, et al. LuTan-1 SAR main applications and products[C]//Proceedings of the 14th European Conference on Synthetic Aperture Radar. Leipzig: VDE, 2022. |
[15] | LIU Kaiyu, WANG R, ZHANG Heng, et al. LuTan-1: an innovative L-band spaceborne SAR mission[C]//Proceedings of the 14th European Conference on Synthetic Aperture Radar. Leipzig: VDE, 2022. |
[16] | LIN Haoyu, DENG Yunkai, ZHANG Heng, et al. On the processing of dual-channel receiving signals of the LuTan-1 SAR system[J]. Remote Sensing, 2022, 14(3):515. |
[17] | LI Hao, LI Bingquan, LI Yongsheng, et al. The stability analysis of Mt. Gongga glaciers affected by the 2022 Luding Ms 6.8 earthquake based on LuTan-1 and Sentinel-1 data[J]. Remote Sensing, 2023, 15(15):3882. |
[18] | ZHU Xiaoxiang, BAMLER R. Superresolving SAR tomography for multidimensional imaging of urban areas: compressive sensing-based TomoSAR inversion[J]. IEEE Signal Processing Magazine, 2014, 31(4):51-58. |
[19] | MA Peifeng, LIN Hui, WANG Weixi, et al. Toward fine surveillance: a review of multitemporal interferometric synthetic aperture radar for infrastructure health monitoring[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(1):207-230. |
[20] |
张勤, 黄观文, 杨成生. 地质灾害监测预警中的精密空间对地观测技术[J]. 测绘学报, 2017, 46(10):1300-1307. DOI:.
doi: 10.11947/j.AGCS.2017.20170453 |
ZHANG Qin, HUANG Guanwen, YANG Chengsheng. Precision space observation technique for geological hazard monitoring and early warning[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1300-1307. DOI:.
doi: 10.11947/j.AGCS.2017.20170453 |
|
[21] | LIU Meiyu, XU Bing, LI Zhiwei, et al. Landslide susceptibility zoning in Yunnan province based on SBAS-InSAR technology and a random forest model[J]. Remote Sensing, 2023, 15(11):2864. |
[22] |
赵泉华, 谢凯浪, 王光辉, 等. 全卷积网络和条件随机场相结合的全极化SAR土地覆盖分类[J]. 测绘学报, 2020, 49(1):65-78. DOI:.
doi: 10.11947/j.AGCS.2020.20190038 |
ZHAO Quanhua, XIE Kailang, WANG Guanghui, et al. Land cover classification of polarimetric SAR with fully convolution network and conditional random field[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(1):65-78. DOI:.
doi: 10.11947/j.AGCS.2020.20190038 |
|
[23] | HU Jun, LIU Jihong, LI Zhiwei, et al. Estimating three-dimensional coseismic deformations with the SM-VCE method based on heterogeneous SAR observations: selection of homogeneous points and analysis of observation combinations[J]. Remote Sensing of Environment, 2021, 255:112298. |
[24] |
李涛, 唐新明, 高小明, 等. SAR卫星业务化地形测绘能力分析与展望[J]. 测绘学报, 2021, 50(7):891-904. DOI:.
doi: 10.11947/j.AGCS.2021.20200199 |
LI Tao, TANG Xinming, GAO Xiaoming, et al. Analysis and outlook of the operational topographic surveying and mapping capability of the SAR satellites[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7):891-904. DOI:.
doi: 10.11947/j.AGCS.2021.20200199 |
|
[25] | FU Haiqiang, ZHU Jianjun, WANG Changcheng, et al. Underlying topography extraction over forest areas from multi-baseline PolInSAR data[J]. Journal of Geodesy, 2018, 92(7):727-741. |
[26] | BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383. |
[27] | FERRETTI A, PRATI C, ROCCA F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212. |
[28] | FERRETTI A, PRATI C, ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1):8-20. |
[29] | 李德仁, 廖明生, 王艳. 永久散射体雷达干涉测量技术[J]. 武汉大学学报(信息科学版), 2004, 29(8):664-668. |
LI Deren, LIAO Mingsheng, WANG Yan. Progress of permanent scatterer interferometry[J]. Geomatics and Information Science of Wuhan University, 2004, 29(8):664-668. | |
[30] | ZHAO Chaoying, ZHANG Qin, YANG Chengsheng, et al. Integration of MODIS data and short baseline subset (SBAS) technique for land subsidence monitoring in Datong, China[J]. Journal of Geodynamics, 2011, 52(1):16-23. |
[31] | 杨成生, 张勤, 赵超英, 等. 短基线集InSAR技术用于大同盆地地面沉降、地裂缝及断裂活动监测[J]. 武汉大学学报(信息科学版), 2014, 39(8):945-950. |
YANG Chengsheng, ZHANG Qin, ZHAO Chaoying, et al. Small baseline bubset InSAR technology used in Datong basin ground subsidence, fissure and fault zone monitoring[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8):945-950. | |
[32] | YANG Chengsheng, LU Zhong, ZHANG Qin, et al. Ground deformation and fissure activity in Datong basin, China 2007—2010 revealed by multi-track InSAR[J]. Geomatics, Natural Hazards and Risk, 2019, 10(1):465-482. |
[33] | YANG Zefa, LI Zhiwei, ZHU Jianjun, et al. Deriving dynamic subsidence of coal mining areas using InSAR and logistic model[J]. Remote Sensing, 2017, 9(2):125. |
[34] | CHENG Jin, HOFMANN B. Regularization methods for ill-posed problems[M]//Handbook of mathematical methods in imaging. New York: Springer, 2015: 91-123. |
[1] | 朱容蔚, 詹银虎, 李广云. 利用恒星与低轨卫星同时成像实现地面定位的算法[J]. 测绘学报, 2024, 53(7): 1278-1287. |
[2] | 王媛, 徐华平, 李春升, 曾国兵, 刘爱芳, 葛仕奇. 星载分布式SAR双频乒乓模式测高精度分析[J]. 测绘学报, 2024, 53(3): 463-472. |
[3] | 唐新明, 李涛, 张祥, 周晓青, 禄競, 张雪飞. L波段差分干涉SAR卫星在轨应用关键参数测试分析[J]. 测绘学报, 2024, 53(10): 1863-1872. |
[4] | 邓云凯, 王宇, 刘开雨, 欧乃铭, 刘大成, 张衡, 王吉利. 陆探一号卫星SAR载荷关键技术[J]. 测绘学报, 2024, 53(10): 1881-1895. |
[5] | 高延东, 郑南山, 张艳锁, 李世金, 杨化超, 卞和方, 张秋昭, 张书毕, 田雨. 基于相位质量融合估计与信息滤波的相位解缠方法[J]. 测绘学报, 2024, 53(10): 1910-1919. |
[6] | 宋鑫友, 张磊, 李涛, 雷宝成, 宋瑞庆. 陆探一号干涉SAR在轨测试阶段基线精化与DEM精度分析[J]. 测绘学报, 2024, 53(10): 1920-1929. |
[7] | 张宇轩, 龙四春, 赖咸根, 邝利军, 苏瑞鹏, 卢世德, 张立亚, 周健, 罗栋, 廖孟光. 基于逆有限元的基坑围护桩等效水平位移监测方法[J]. 测绘学报, 2024, 53(1): 126-136. |
[8] | 李涛, 唐新明, 李世金, 周晓青, 张祥, 许耀宗. L波段差分干涉SAR卫星基础形变产品分类[J]. 测绘学报, 2023, 52(5): 769-779. |
[9] | 詹银虎, 张超, 李飞战, 骆亚波, 米科峰, 张旭, 张志峰. 基于图像全站仪的天文大地垂线偏差测量及其精度分析[J]. 测绘学报, 2023, 52(2): 175-182. |
[10] | 戴可人, 沈月, 吴明堂, 冯文凯, 董秀军, 卓冠晨, 易小宇. 联合InSAR与无人机航测的白鹤滩库区蓄水前地灾隐患广域识别[J]. 测绘学报, 2022, 51(10): 2069-2082. |
[11] | 何秀凤, 高壮, 肖儒雅, 罗海滨, 冯灿. 多时相Sentinel-1A InSAR的连盐高铁沉降监测分析[J]. 测绘学报, 2021, 50(5): 600-611. |
[12] | 朱永兴, 谭述森, 杜兰, 贾小林. 顾及粗差影响的全球电离层克里金插值及精度分析[J]. 测绘学报, 2019, 48(7): 840-848. |
[13] | 袁一, 程亮, 宗雯雯, 李舒怡, 李满春. 互联网众源照片的三维重建定位技术[J]. 测绘学报, 2018, 47(5): 631-643. |
[14] | 房亚男, 辛景民, 曾光, 王家松, 李杰. 模糊度固定的北斗卫星多系统融合精密轨道确定[J]. 测绘学报, 2018, 47(3): 341-347. |
[15] | 王阅兵, 甘卫军, 陈为涛, 连尉平, 游新兆. 北斗导航系统精密单点定位在地壳运动监测中的应用分析[J]. 测绘学报, 2018, 47(1): 48-56. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||