测绘学报 ›› 2024, Vol. 53 ›› Issue (10): 1967-1980.doi: 10.11947/j.AGCS.2024.20240053.

• 遥感大模型 • 上一篇    

智能遥感大模型研究进展与发展方向

燕琴1,2,(), 顾海燕1,2, 杨懿1,2(), 李海涛1,2, 沈恒通1,2, 刘世琦1,2   

  1. 1.中国测绘科学研究院,北京 100830
    2.测绘科学与地球空间信息技术自然资源部重点实验室,北京 100830
  • 收稿日期:2024-01-31 发布日期:2024-11-26
  • 通讯作者: 杨懿 E-mail:yanqin@casm.ac.cn;yangyi@casm.ac.cn
  • 作者简介:燕琴(1968—),女,博士,研究员,研究方向为自然资源调查监测、国土空间规划与用途管制、航空航天遥感测图等。E-mail:yanqin@casm.ac.cn
  • 基金资助:
    国家重点研发计划(2023YFB3907600);中央级公益性科研院所基本科研业务费项目(AR2420)

Research progress and trend of intelligent remote sensing large model

Qin YAN1,2,(), Haiyan GU1,2, Yi YANG1,2(), Haitao LI1,2, Hengtong SHEN1,2, Shiqi LIU1,2   

  1. 1.Chinese Academy of Surveying and Mapping, Beijing 100830, China
    2.Key Laboratory of Geospatial Technology for the Surveying and Mapping Sciences of the Ministry of Natural Resources, Beijing 100830, China
  • Received:2024-01-31 Published:2024-11-26
  • Contact: Yi YANG E-mail:yanqin@casm.ac.cn;yangyi@casm.ac.cn
  • About author:YAN Qin (1968—), female, PhD, researcher, majors in natural resource surveying and monitoring, territorial spatial planning and land use control, and aerospace remote sensing mapping. E-mail: yanqin@casm.ac.cn
  • Supported by:
    The National Key Research and Development Program of China(2023YFB3907600);Basic Research Funds for Central Public Walfare Research Institute(AR2420)

摘要:

AI大模型以其泛化性、通用性、高精度等优势,成为计算机视觉、自然语言处理等AI应用的基石,本文在分析AI大模型发展历程、价值、挑战的基础上,首先从数据、模型、下游任务3个层面阐述了其研究进展,数据层面从单模态向多模态发展,模型层面从小模型向大模型发展,下游任务层面从单任务向多任务发展;其次,探讨了遥感大模型3个重点发展方向,即多模态遥感大模型、可解释遥感大模型、人类反馈强化学习;再次,实现了“无标签数据集构建-自监督模型学习-下游迁移应用”遥感大模型构建思路,初步开展了技术试验,验证了遥感大模型的显著优势;最后,进行了总结与展望,呼吁以应用任务为导向,将理论方法、工程技术、应用迭代进行结合,实现遥感大模型的低成本训练、高效快速推理、轻量化部署及工程化落地应用。

关键词: 遥感大模型, 人工智能, 多模态, 可解释, 人类反馈强化学习, 自监督学习

Abstract:

AI large models, with their advantages in generalization, universality, and high accuracy, have become the cornerstone of various AI applications such as computer vision, natural language processing. Based on the analysis of the development process, value, and challenges of AI large models, this article first discusses the research progress of remote sensing large models from three perspectives: data, model, and downstream tasks. At the data level, there is a transition from single modality to multi-modality; at the model level, there is a shift from small models to large models; and at the downstream task level, there is a development from single-task to multi-task. Next, the article explores three key development directions for remote sensing large models: multi-modal remote sensing large models, interpretable remote sensing large models, and reinforcement learning from human feedback(RLHF). Furthermore, it realizes a construction approach for remote sensing large models, namely “construction of unlabeled dataset-self-supervised model learning-downstream transfer application”. Technical experiments have been conducted to validate the significant advantages of remote sensing large models. Finally, the article concludes and provides prospects, emphasizing the need to focus on application tasks and combine theoretical methods, engineering technology, and iterative applications to achieve low-cost training, efficient and fast inference, lightweight deployment, and engineering-based applications for remote sensing large models.

Key words: remote sensing large models, artificial intelligence, multi-modal, interpretable, reinforcement learning from human feedback, self-supervised learning

中图分类号: