测绘学报 ›› 2024, Vol. 53 ›› Issue (5): 946-958.doi: 10.11947/j.AGCS.2024.20230335

• 摄影测量学与遥感 • 上一篇    下一篇

无序无人机影像的并行化SfM三维重建方法

姜三1,2,3(), 马一尘1, 李清泉2, 江万寿4, 郭丙轩4, 王力哲1()   

  1. 1.中国地质大学(武汉)计算机学院,湖北 武汉 430074
    2.人工智能与数字经济广东省实验室(深圳),广东 深圳 518060
    3.湖北珞珈实验室,湖北 武汉 430072
    4.武汉大学测绘遥感信息工程国家重点实验室,湖北 武汉 430079
  • 收稿日期:2023-08-11 修回日期:2024-02-20 发布日期:2024-06-19
  • 通讯作者: 王力哲 E-mail:jiangsan@cug.edu.cn;lzwang@cug.edu.cn
  • 作者简介:姜三(1987—),男,博士,副研究员,研究方向为多源影像匹配和三维重建。E-mail:jiangsan@cug.edu.cn
  • 基金资助:
    国家自然科学基金(42371442);湖北省自然科学基金(2023AFB568);人工智能与数字经济广东省实验室(深圳)开放课题(GML-KF-22-08);湖北珞珈实验室开放基金(230100013)

Parallel SfM-based 3D reconstruction for unordered UAV images

San JIANG1,2,3(), Yichen MA1, Qingquan LI2, Wanshou JIANG4, Bingxuan GUO4, Lizhe WANG1()   

  1. 1.School of Computer Science, China University of Geosciences, Wuhan 430074, China
    2.Guangdong Laboratory of Artificial Intelligence and Digital Economy (Shenzhen), Shenzhen 518060, China
    3.Hubei Luojia Laboratory, Wuhan 430072, China
    4.State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
  • Received:2023-08-11 Revised:2024-02-20 Published:2024-06-19
  • Contact: Lizhe WANG E-mail:jiangsan@cug.edu.cn;lzwang@cug.edu.cn
  • About author:JIANG San (1987—), male, PhD, associate professor, majors in multi-source image matching and 3D reconstruction. E-mail: jiangsan@cug.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(42371442);The Natural Science Foundation of Hubei Province(2023AFB568);Open Research Fund from the Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)(GML-KF-22-08);Open Research Fund from Hubei Luojia Laboratory(230100013)

摘要:

增量式运动恢复结构(ISfM)已成为无人机影像三维重建的关键技术。然而,大数据量、大重叠度和高分辨率的无序无人机影像导致的匹配对检索代价大、迭代优化误差累积和效率低的问题,使其难以满足大场景ISfM处理需求。本文提出联合全局描述子和图索引的无人机影像并行化SfM方法。针对影像特征数量大、影像检索编码本尺寸增加导致的匹配对检索效率低的问题,设计了联合全局描述子和图索引的高效影像检索方法,从而加速影像匹配。针对分块并行化SfM子场景合并存在同名点搜索效率低、内存消耗大、合并解算精度低的问题,设计了基于按需匹配图和双向重投影误差的子场景合并方法,实现无人机影像的并行化SfM重建。利用不同场景、不同采集方式获取的真实无人机影像进行试验,结果表明本文方法能够实现36~108倍加速比的匹配对检索,ISfM重建效率达到30倍加速,且相对定向和绝对定向精度与传统方法相当。

关键词: 数字摄影测量, 无人机遥感, 运动恢复结构, 影像检索

Abstract:

Efficient incremental structure from motion (ISfM) has become the core technique for (unmanned aerial vehicle, UAV) image orientation. However, the characteristics of large volume, high overlap, and high resolution cause the deficiency in match pair retrieval and the accumulated error and low efficiency in bundle adjustment (BA) optimization, which degenerate its performance for large-scale scenes. This study proposes a parallel SfM for UAV images via global descriptors and graph-based indexing. On the one hand, to cope with the deficiency caused by a large number of local descriptors and the large size of a codebook, an efficient match pair retrieval is designed via the global descriptor and graph-based indexing, which could dramatically accelerate feature matching; on the other hand, to address the deficiency of correspondence searching and low accuracy of transformation estimation in parallel SfM, this study designs an efficient cluster merging algorithm based on the on-demand correspondence graph and bi-directional reprojection error, which achieves efficient and accurate parallel SfM. The proposed algorithm is verified by using three UAV datasets, and the experimental results demonstrate that the proposed method can increase match pair retrieval with speedup ratios ranging from 36 to 108, and dramatically improves the SfM efficiency with the speedup ratio better than 30 and with the comparative accuracy. The accuracy of relative and absolute orientation is comparative to that of traditional methods.

Key words: digital photogrammetry, UAV remote sensing, structure from motion, image retrieval

中图分类号: