测绘学报 ›› 2025, Vol. 54 ›› Issue (3): 552-562.doi: 10.11947/j.AGCS.2025.20240011

• 地图学与地理信息 • 上一篇    下一篇

面向聚合型地理流的双变量时空关联分析方法

符青扬1,2(), 周梦杰2,3,4(), 李伊戈2, 陈伟涛1   

  1. 1.中国地质大学(武汉)计算机学院,湖北 武汉 430074
    2.湖南师范大学地理科学学院,湖南 长沙 410081
    3.地理空间大数据挖掘与应用湖南省重点实验室,湖南 长沙 410081
    4.湖南师范大学城乡转型过程与效应重点实验室,湖南 长沙 410081
  • 收稿日期:2024-01-15 出版日期:2025-04-11 发布日期:2025-04-11
  • 通讯作者: 周梦杰 E-mail:im.fqy@cug.edu.cn;mengjiezhou@hunnu.edu.cn
  • 作者简介:符青扬(1999—),女,博士生,研究方向为地理数据挖掘分析与应用。 E-mail:im.fqy@cug.edu.cn
  • 基金资助:
    国家自然科学基金(41901314);湖南省教育厅科学研究项目(23B0093);中央高校基本科研业务费地质探测与评估教育部重点实验室主任基金(GLAB2024ZR01)

A bivariate spatio-temporal association analysis method for aggregated flows

Qingyang FU1,2(), Mengjie ZHOU2,3,4(), Yige LI2, Weitao CHEN1   

  1. 1.Faculty of Computer Science, China University of Geosciences, Wuhan 430074, China
    2.School of Geographical Sciences, Hunan Normal University, Changsha 410081, China
    3.Hunan Key Laboratory of Geospatial Big Data Mining and Application, Changsha 410081, China
    4.Key Laboratory for Urban-Rural Transformation Processes and Effects, Hunan Normal University, Changsha 410081, China
  • Received:2024-01-15 Online:2025-04-11 Published:2025-04-11
  • Contact: Mengjie ZHOU E-mail:im.fqy@cug.edu.cn;mengjiezhou@hunnu.edu.cn
  • About author:FU Qingyang (1999—), female, PhD candidate, majors in geospatial data mining analysis and application. E-mail: im.fqy@cug.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(41901314);The Scientific Research Project of Hunan Provincial Department of Education(23B0093);The Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education Supported by the Fundamental Research Funds for the Central Universities(GLAB2024ZR01)

摘要:

聚合型地理流可反映群体视角下不同空间区域间的时空交互,常包含描述数量特征的非空间属性,如人口流的迁徙强度。对聚合流的两类非空间属性进行时空关联分析,可挖掘不同属性间的相互作用模式,有助于理解地理空间中动态交互现象的内在发生机理。然而,目前仍缺乏评估聚合流两类属性间关联程度的时空统计指标,对不同属性间关联的非对称性和时空异质性特征的认知也仍有不足。对此,本文提出了面向聚合流的双变量时空关联分析方法,建立聚合流时空权重表达其时空邻近关系,构造聚合流的全局和局部双变量时空莫兰指数,以评估聚合流两类属性间非对称的时空关联程度、识别局部时空关联模式及其动态变化。模拟试验结果验证了该方法能有效挖掘聚合流两类属性间的全局和局部时空关联模式,同时通过参数敏感度试验确定了合适的时空关联分析尺度。实际案例应用结果揭示了山东省内城际搜索行为与出行活动之间的时空关联,可为深入分析虚实视角下的城市吸引力提供理论依据。

关键词: 聚合型地理流, 时空关联, 双变量时空莫兰指数, 时空权重

Abstract:

Aggregated flows can reflect the spatio-temporal interactions between different spatial areas from the group perspective, and often contain non-spatial attributes that describe quantitative characteristics, such as the migratory intensity of population flows. Analyzing the spatio-temporal association between two non-spatial attributes of aggregated flows can reveal the interaction patterns between different flow attributes, which helps to understand the intrinsic occurrence mechanisms of dynamic interaction phenomena in geographic space. However, there is still a lack of spatio-temporal statistical indicators to evaluate the association degree between two flow attributes, and the understanding of the asymmetry and spatio-temporal heterogeneity of the association remains inadequate. Therefore, this paper proposes a bivariate spatio-temporal association analysis method for aggregated flows. It establishes spatio-temporal weights for aggregated flows to express their spatio-temporal adjacency relationships. Then, it constructs the global and local bivariate flow spatio-temporal Moran's I to assess the asymmetric spatio-temporal association degree between two flow attributes, and identify the local spatio-temporal association patterns and their dynamic variations. The synthetic test results verify that the method can effectively uncover the global and local spatio-temporal association patterns between two flow attributes, and the appropriate scale of spatio-temporal association analysis is also identified through parameter sensitivity tests. The practical application results reveal the spatio-temporal associations between intercity search behavior and travel activities in Shandong, which can provide a theoretical basis for in-depth analysis of urban attractiveness from virtual and real perspectives.

Key words: aggregated flow, spatio-temporal association, bivariate spatio-temporal Moran's I, spatio-temporal weight

中图分类号: