测绘学报 ›› 2020, Vol. 49 ›› Issue (12): 1619-1629.doi: 10.11947/j.AGCS.2020.20190382

• 地图学与地理信息 • 上一篇    下一篇

2D地图的建筑物场景结构提取方法及其在城市增强现实中的应用

徐旺, 游雄, 张威巍, 邓晨   

  1. 信息工程大学地理空间信息学院, 河南 郑州 450052
  • 收稿日期:2019-09-09 修回日期:2020-02-20 发布日期:2020-12-25
  • 通讯作者: 游雄 E-mail:youarexiong@163.com
  • 作者简介:徐旺(1990-),男,博士生,研究方向为增强现实与战场环境感知、导航与位置服务。E-mail:sirenargiser@126.com
  • 基金资助:
    中原学者科学家工作室资助项目

Method of building scene structure extraction based on 2D map and its application in urban augmented reality

XU Wang, YOU Xiong, ZHANG Weiwei, DENG Chen   

  1. Institute of Geospatial Information, Information Engineering University, Zhengzhou 450052, China
  • Received:2019-09-09 Revised:2020-02-20 Published:2020-12-25
  • Supported by:
    The Central Plains Scholar Scientist Studio Project

摘要: 城市AR中,场景结构的自动获取,对自适应信息表达具有重要意义,是解决“层叠式”信息表现形式引发的信息指示不明、场景感知混乱等问题的关键步骤。然而,场景结构信息隐藏在场景图像中,直接提取十分困难。2D地图描述了地理实体的位置、轮廓和空间布局,可作为场景结构提取的先验信息。针对城市AR中场景结构获取难、效率低的问题,本文提出一种基于2D地图的建筑物场景结构自动化提取方法。在地理配准的基础上,首先根据2D地图中建筑物的轮廓和属性信息,构建场景图像语义分割的结构线索;然后将其作为过分割处理后场景图像合并的依据,生成多个包含语义信息的图像区域;最后根据图像区域与2D地图中建筑物轮廓之间的映射关系,提取出场景图像中的区域轮廓、场景深度和平面朝向等场景结构信息。试验选取了格拉茨地区32个建筑物场景进行测试。结果表明本文方法能实时地提取建筑物场景结构,且建筑物立面提取的质量明显优于对比方法。提取的场景结构能应用于城市AR多种自适应信息表达方法中,使信息标注更明确,遮挡关系更清晰。

关键词: 城市增强现实, 建筑物场景结构提取, 语义分割, 自适应表达, 信息标注

Abstract: In urban AR, the automatic acquisition of scene structure is significant to adaptive information representation, and is a key step to solve the problems of unclear information indication and confusing scene perception caused by “cascade” information representation. However, the scene structure information is hidden in the scene image, which is difficult to extract directly. The 2D map, containing the locations, contours and spatial layout of the geographic entities, can be used as the prior information of the scene structure extraction. Aiming at the problem of difficult and inefficient acquisition of scene structure in urban AR, a method of automatic extraction for building scene from image using 2D map is proposed. Firstly, on the basis of geographic registration, some structural clues for scene image semantic segmentation are constructed, according to the contours and attribute information of buildings in 2D map. Then they are used as the parameters of image merging after over-segmentation to generate multiple image regions containing semantic information. Finally, according to the mapping relationship between the image regions and the building contours in the 2D map, the scene structure information such as the region contours, scene depth and plane orientation in the scene image is extracted. 32 building scenes in Graz area were selected for testing. The results show that the proposed method can extract scene structure in real-time with high accuracy, and the quality of the building facades extraction is obviously better than that of the comparison methods. The extracted scene structure can be applied to various adaptive information expression methods in urban AR to make the information annotation and the occlusion relationship clearer.

Key words: urban augmented reality, building scene structure extraction, semantic segmentation, adaptive representation, information annotation

中图分类号: