测绘学报 ›› 2021, Vol. 50 ›› Issue (2): 270-278.doi: 10.11947/j.AGCS.2021.20200094

• 海洋测量学 • 上一篇    下一篇

机载激光测深波形去噪算法对比分析

宋越1, 李厚朴1, 翟国君2   

  1. 1. 海军工程大学导航工程系, 湖北 武汉 430033;
    2. 海军海洋测绘研究所, 天津 300061
  • 收稿日期:2020-03-17 修回日期:2020-07-31 发布日期:2021-03-03
  • 通讯作者: 李厚朴 E-mail:lihoupu1985@126.com
  • 作者简介:宋越(1996-),男,硕士生,研究方向为机载激光浅海测深技术及应用。E-mail:songyue199602@163.com
  • 基金资助:
    国家自然科学基金(41974005;41871376;41771487);湖北省杰出青年科学基金(2019CFA086)

Comparative analysis of airborne laser bathymetric waveforms denoising algorithms

SONG Yue1, LI Houpu1, ZHAI Guojun2   

  1. 1. Department of Navigation, Naval University of Engineering, Wuhan 430033, China;
    2. Tianjin Institute of Hydrographic Surveying and Charting, Tianjin 300061, China
  • Received:2020-03-17 Revised:2020-07-31 Published:2021-03-03
  • Supported by:
    The National Natural Science Foundation of China(Nos. 41974005;41871376;41771487);The Natural Science Foundation for Distinguished Young Scholars of Hubei Province of China(No. 2019CFA086)

摘要: 对机载激光测深数据进行去噪拟合是提取水底地形的关键步骤。本文对比了小波自适应阈值去噪、经验模型去噪(EMD)以及联合去噪的效果,利用多元高斯拟合对去噪效果进行检验。对比得到了最优去噪算法及最优参数选择,实现对海底特征的高精度提取。结果表明:在测深数据进行小波阈值去噪时,固定阈值小波去噪效果优于其他去噪效果,去噪分解层级6层以上趋于稳定,对去噪数据进行五阶高斯拟合后平均精度达到8.218 2。本文算法具有较强的稳健性,能够满足蓝绿激光实际应用的技术要求,为精确提取海底特征信息提供参考。

关键词: 机载激光测深, 小波自适应阈值去噪, 经验模型去噪, 多元高斯函数拟合

Abstract: Denoising fitting of airborne laser bathymetry data is a key step in extracting the bottom terrain. The algorithm effects of wavelet adaptive threshold denoising, empirical model denoising (EMD) and joint denoising are compared in this paper, and then multivariate Gaussian fitting is used to test the denoising effect. The optimal denoising algorithm and parameter selection are obtained by comparison, and it is realized that the high-precision extraction of seabed features. This study has shown that: when the sounding data is denoised by wavelet threshold, the fixed threshold wavelet denoising effect is superior to other denoising effects, and the denoising decomposition level is more than 6 layers, which tends to be stable. The average accuracy of the algorithm reaches 8.218 2 after the fifth-order Gaussian fitting of the denoising data. The algorithm has strong robustness, it can meet the technical requirements of blue-green laser practical application, and provides a reference for accurately extracting seafloor feature information.

Key words: airborne laser bathymetry, wavelet adaptive threshold denoising, empirical model denoising, multiple Gaussian function fitting

中图分类号: