[1] 翟国君, 黄谟涛. 海洋测量技术研究进展与展望[J]. 测绘学报, 2017, 46(10): 1752-1759. DOI: 10.11947/j.AGCS.2017.20170309. ZHAI Guojun, HUANG Motao. The review of development of marine surveying technology[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1752-1759. DOI: 10.11947/j.AGCS.2017.20170309. [2] GUENTHER G C, CUNNINGHAM A G, LAROCQUE P E, et. al. Meeting the accuracy challenge in airborne LiDAR bathymetry[C]//Proceedings of the 20th EARSeL Symposium: Workshop on LiDAR Remote Sensing of Land and Sea Held. Dresden: AGRIS,2000. [3] MANDLBURGER G, PFENNIGBAUER M, PFEIFER N. Analyzing near water surface penetration in laser bathymetry—a case study at the River Pielach[C]//Proceedings of 2013 ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences.Antalya: IEEE, 2013. [4] 胡善江, 贺岩, 陈卫标, 等. 机载双频激光雷达系统设计和研制[J]. 红外与激光工程, 2018, 47(9): 0930001. HU Shanjiang, HE Yan, CHEN Weibiao, et al. Design of airborne dual-frequency laser radar system[J]. Infrared and Laser Engineering, 2018, 47(9): 0930001. [5] FUCHS E, TUELL G. Conceptual design of the CZMIL data acquisition system (DAS): integrating a new bathymetric LiDAR with a commercial spectrometer and metric camera for coastal mapping applications[C]//Proceedings of 2010 SPIE: the International Society for Optical Engineering.Orlando:SPIE,2010. [6] HÖFLE B, VETTER M, PFEIFER N, et al. Water surface mapping from airborne laser scanning using signal intensity and elevation data[J]. Earth Surface Processes and Landforms, 2009, 34(12): 1635-1649. [7] ZHAO Jianhu, ZHAO Xinglei, ZHANG Hongmei, et al.Shallow water measurements using a single green laser corrected by building a near water surface penetration model[J]. Remote Sensing, 2017, 9: 426. [8] MANDLBURGER G, PFEIFER N, SOERGEL U. Water surface reconstruction in airborne laser bathymetry from redundant bed observations[C]//Proceedings of 2017 ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences.Wuhan: ISPRS,2017. [9] ABDALLAH H, BAILLY J S, BAGHDADI N N, et al. Potential of space-borne LiDAR sensors for global bathymetry in coastal and inland waters[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(1): 202-216. [10] ABADY L, BAILLY J S, BAGHDADI N, et al. Assessment of quadrilateral fitting of the water column contribution in LiDAR waveforms on bathymetry estimates[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 11(4): 813-817. [11] DING Kai, LI Qingquan, ZHU Jiasong, et al. An improved quadrilateral fitting algorithm for the water column contribution in airborne bathymetric LiDAR waveforms[J]. Sensors (Basel, Switzerland), 2018, 18(2): 552. [12] 王丹菂, 徐青, 邢帅, 等. 一种由粗到精的机载激光测深信号检测方法[J]. 测绘学报, 2018, 47(8): 1148-1159. DOI: 10.11947/j.AGCS.2018.20170466. WANG Dandi, XU Qing, XING Shuai, et. al. A coarse-to-fine signal detection method for airborne LiDAR bathymetry[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(8): 1148-1159. DOI: 10.11947/j.AGCS.2018.20170466. [13] 李凯, 张永生, 童晓冲, 等. 不同函数拟合水体后向散射波形对激光测深精度的影响[J]. 武汉大学学报(信息科学版), 2018, 43(4): 548-554. LI Kai, ZHANG Yongsheng, TONG Xiaochong, et al. The impact of different fitting functions for water backscatter waveforms on the accuracy of laser sounding[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 548-554. [14] 亓超, 宿殿鹏, 王贤昆, 等. 基于分层异构模型的机载激光测深波形拟合算法[J]. 红外与激光工程, 2019, 48(2): 0206004. QI Chao, SU Dianpeng, WANG Xiankun, et al. Fitting algorithm for airborne laser bathymetric waveforms based on layered heterogeneous model[J]. Infrared and Laser Engineering, 2019, 48(2): 0206004. [15] GUO Kai, XU Wenxue, LIU Yanxiong, et al.Gaussian half-wavelength progressive decomposition method for waveform processing of airborne laser bathymetry[J]. Remote Sensing, 2018, 10(1): 35. [16] 宋越, 李厚朴, 翟国君. 机载激光测深波形去噪算法对比分析[J]. 测绘学报, 2021, 50(2): 270-278. DOI: 10.11947/j.AGCS.2021.20200094. SONG Yue, LI Houpu, ZHAI Guojun. Comparative analysis of airborne laser bathymetric waveforms denoising algorithms[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(2): 270-278. DOI: 10.11947/j.AGCS.2021.20200094. [17] SCHWARZ R, PFEIFER N, PFENNIGBAUER M, et al. Exponential decomposition with implicit deconvolution of LiDAR backscatter from the water column[J]. PFG-Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2017, 85(3): 159-167. [18] SCHWARZ R, MANDLBURGER G, PFENNIGBAUER M, et al. Design and evaluation of a full-wave surface and bottom-detection algorithm for LiDAR bathymetry of very shallow waters[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150: 1-10. [19] 申二华, 张永生, 李凯. 圆扫描式机载激光测深系统检校模型及仿真分析[J]. 测绘学报, 2016, 45(8): 943-951. DOI: 10.11947/j.AGCS.2016.20150532. SHEN Erhua, ZHANG Yongsheng, LI Kai. The calibration model and simulation analysis of circular scanning airborne laser bathymetry system[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(8): 943-951. DOI: 10.11947/j.AGCS.2016.20150532. [20] 贺岩, 胡善江, 陈卫标, 等. 国产机载双频激光雷达探测技术研究进展[J]. 激光与光电子学进展, 2018, 55(8): 082801. HE Yan, HU Shanjiang, CHEN Weibiao, et al. Research progress of domestic airborne dual-frequency LiDAR detection technology[J]. Laser & Optoelectronics Progress, 2018, 55(8): 082801. [21] ZHAO Xinglei, ZHAO Jianhu, ZHANG Hongmei, et al. Remote sensing of suspended sediment concentrations based on the waveform decomposition of airborne LiDAR bathymetry[J]. Remote Sensing, 2018, 10(2): 247. [22] DING K, WANG C, TAO M, et al. A new algorithm for retrieving diffuse attenuation coefficient based on big LiDAR bathymetry data[C]//Proceeding of 2019 International Symposium on Cyberspace Safety and Security。Guangzhou: Springer, 2019. [23] ABDALLAH H, BAGHDADI N, BAILLY J S, et al. Wa-LiD: a new LiDAR simulator for waters[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4): 744-748. DOI: 10.1109/LGRS.2011.2180506. [24] BIRKEBAK M, EREN F, PE'ERI S, et al. The effect of surface waves on airborne LiDAR bathymetry (ALB) measurement uncertainties[J]. Remote Sensing, 2018, 10(3): 453. [25] BOUHDAOUI A, BAILLY J S, BAGHDADI N, et al. Modeling the water bottom geometry effect on peak time shifting in LiDAR bathymetric waveforms[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(7): 1285-1289. [26] GUENTHER G C.Airborne laser hydrography: system design and performance factors[R]. Rockville: National Oceanic and Atmospheric Administration, 1985. [27] MUIRHEAD K, CRACKNELL A P. Airborne LiDAR bathymetry[J]. International Journal of Remote Sensing, 1986, 7(5): 597-614. [28] XING Shuai, WANG Dandi, Xu Qing, et. al. A depth-adaptive waveform decomposition method for airborne LiDAR bathymetry[J]. Sensors, 2019, 19(23): E5065. [29] WAGNER W, RONCAT A, MELZER T, et al. Waveform analysis techniques in airborne laser scanning[J]. International Archives of Photogrammetry and Remote Sensing, 2007, 36(3): 413-418. [30] BIGGS D S, ANDREWS M. Acceleration of iterative image restoration algorithms[J]. Applied Optics, 1997, 36(8): 1766-1775. [31] 郭锴, 刘焱雄, 徐文学, 等. 机载激光测深波形分解中LM与EM参数优化方法比较[J]. 测绘学报, 2020, 49(1): 117-131. DOI: 10.11947/j.AGCS.202.20180242. GUO Kai, LIU Yanxiong, XU Wenxue, et. al. Comparison of LM and EM parameter optimization methods for airborne laser bathymetric full-waveform decomposition[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(1): 117-131. DOI: 10.11947/j.AGCS.202.20180242. |