[1] TANG Xinming, LI Tao, GAO Xiaoming, et al. Research on key technologies of precise InSAR surveying and mapping applications using automatic SAR imaging[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2):27-37. DOI:10.11947/j.JGGS.2019.0204. [2] KRIEGER G, HAJNSEK I, PAPATHANASSIOU K P, et al. Interferometric synthetic aperture radar (SAR) missions employing formation flying[J]. Proceedings of the IEEE, 2010, 98(5):816-843. [3] ANTONY J W, GONZALEZ J H, SCHWERDT M, et al. Results of the TanDEM-X baseline calibration[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(3):1495-1501. [4] YOON Y T, EINEDER M, YAGUE-MARTINEZ N, et al. TerraSAR-X precise trajectory estimation and quality assessment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(6):1859-1868. [5] MONTENBRUCK O, WERMUTH M, KAHLE R. GPS based relative navigation for the TanDEM-X mission-First flight results[J]. Navigation, 2011, 58(4):293-304. [6] JÄGGI A, MONTENBRUCK O, MOON Y, et al. Inter-agency comparison of TanDEM-X baseline solutions[J]. Advances in Space Research, 2012, 50(2):260-271. [7] 楼良盛, 刘志铭, 张昊, 等. 天绘二号卫星工程设计与实现[J]. 测绘学报, 2020, 49(10):1252-1264. DOI:10.11947/j.AGCS.2020.20200175. LOU Liangsheng, LIU Zhiming, ZHANG Hao, et al. TH-2 satellite engineering design and implementation[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10):1252-1264. DOI:10.11947/j.AGCS.2020.20200175. [8] MONTENBRUCK O. Kinematic GPS positioning of LEO satellites using ionosphere-free single frequency measurements kinematische GPS positionierung von LEO satelliten mittels ionosphärenfreier einfrequenz-messungen[J]. Aerospace Science and Technology, 2003, 7(5):396-405. [9] MONTENBRUCK O, VAN HELLEPUTTE T, KROES R, et al. Reduced dynamic orbit determination using GPS code and carrier measurements reduziert-dynamische bahnbestimmung mit GPS Code- und phasenmessungen[J]. Aerospace Science and Technology, 2005, 9(3):261-271. [10] 张兵兵, 聂琳娟, 吴汤婷, 等. SWARM卫星简化动力学厘米级精密定轨[J]. 测绘学报, 2016, 45(11):1278-1284. DOI:10.11947/j.AGCS.2016.20160284. ZHANG Bingbing, NIE Linjuan, WU Tangting, et al. Centimeter precise orbit determination for SWARM satellite via reduced-dynamic method[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(11):1278-1284. DOI:10.11947/j.AGCS.2016.20160284. [11] WU S C, YUNCK T P, THORNTON C L. Reduced-dynamic technique for precise orbit determination of low earth satellites[J]. Journal of Guidance, Control and Dynamics, 1991, 14(1):24-30. [12] KROES R, MONTENBRUCK O, BERTIGER W, et al. Precise GRACE baseline determination using GPS[J]. GPS Solutions, 2005, 9(1):21-31. [13] BOCK H, JÄGGI A, BEUTLER G, et al. GOCE:precise orbit determination for the entire mission[J]. Journal of Geodesy, 2014, 88(11):1047-1060. [14] VAN DEN IJSSEL J, ENCARNAÇÃO J, DOORNBOS E, et al. Precise science orbits for the Swarm satellite constellation[J]. Advances in Space Research, 2015, 56(6):1042-1055. [15] JÄGGI A, HUGENTOBLER U, BOCK H, et al. Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data[J]. Advances in Space Research, 2007, 39(10):1612-1619. [16] ALLENDE-ALBA G, MONTENBRUCK O. Robust and precise baseline determination of distributed spacecraft in LEO[J]. Advances in Space Research, 2016, 57(1):46-63. [17] ALLENDE-ALBA G, MONTENBRUCK O, JÄGGI A, et al. Reduced-dynamic and kinematic baseline determination for the Swarm mission[J]. GPS Solutions, 2017, 21(3):1275-1284. [18] GU Defeng, JU Bing, LIU Junhong, et al. Enhanced GPS-based GRACE baseline determination by using a new strategy for ambiguity resolution and relative phase center variation corrections[J]. Acta Astronautica, 2017, 138:176-184. [19] KROES R. Precise relative positioning of formation flying spacecraft using GPS[D]. Delft:Delft University of Technology, 2006. [20] JU Bing, GU Defeng, HERRING T A, et al. Precise orbit and baseline determination for maneuvering low earth orbiters[J]. GPS Solutions, 2017, 21(1):53-64. [21] ALLENDE-ALBA G, MONTENBRUCK O, ARDAENS J S, et al. Estimating maneuvers for precise relative orbit determination using GPS[J]. Advances in Space Research, 2017, 59(1):45-62. [22] MONTENBRUCK O, KROES R. In-flight performance analysis of the CHAMP BlackJack GPS receiver[J]. GPS Solutions, 2003, 7(2):74-86. [23] SHAO Kai, GU Defeng, JU Bing, et al. Analysis of Tiangong-2 orbit determination and prediction using onboard dual-frequency GNSS data[J]. GPS Solutions, 2020, 24(11):1-13. [24] GUO Jing, ZHAO Qile, GUO Xiang, et al. Quality assessment of onboard GPS receiver and its combination with DORIS and SLR for Haiyang 2A precise orbit determination[J]. Science China Earth Sciences, 2015, 58(1):138-150. [25] WU J T, WU S C, HAJJ G A, et al. Effects of antenna orientation on GPS carrier phase[C]//Proceedings of the AAS/AIAA Astrodynamics Conference. San Diego, CA:AIAA, 1992:1647-1660. [26] GU Defeng, YI Dongyun. Reduced dynamic orbit determination using differenced phase in adjacent epochs for spaceborne dual-frequency GPS[J]. Chinese Journal of Aeronautics, 2011, 24(6):789-796. [27] DACH R, BROCKMANN E, SCHAER S, et al. GNSS processing at CODE:status report[J]. Journal of Geodesy, 2009, 83(3):353-365. [28] MCCARTHY D D, PETIT G. IERS conventions 2003[R]. Frankfurt am Main:Verlag des Bundesamts für Kartographie und Geodäsie, 2004. [29] JACCHIA L G. Revised static models of the thermosphere and exosphere with empirical temperature profiles[R]. Cambridge:Smithsonian Institution, 1971. [30] 秦显平. 星载GPS低轨卫星定轨理论及方法研究[D]. 郑州:信息工程大学, 2009. QIN Xianping. Research on precision orbit determination theory and method of low earth orbiter based on GPS technique[D]. Zengzhou:Information Engineering University, 2009. [31] 易彬, 秦显平, 谷德峰, 等. 多机构比对融合的分布式InSAR编队星间基线确定[J]. 航空学报, 2018, 39(1):238-247. YI Bin, QIN Xianping, GU Defeng, et al. Baseline determination for distributed InSAR satellite system using inter-agency comparison and fusion[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):238-247. [32] PEARLMAN M R, DEGNAN J J, BOSWORTH J M. The international laser ranging service[J]. Advances in Space Research, 2015, 30(2):135-143. |