测绘学报 ›› 2021, Vol. 50 ›› Issue (6): 812-822.doi: 10.11947/j.AGCS.2021.20200395

• 地图学与地理信息 • 上一篇    下一篇

移位安全区约束下的建筑物群移位免疫遗传算法

刘远刚1, 李少华1, 蔡永香1, 何贞铭1, 马潇雅1, 李鹏程1, 郭庆胜2, 何宗宜1,2   

  1. 1. 长江大学地球科学学院, 湖北 武汉 430100;
    2. 武汉大学资源与环境科学学院, 湖北 武汉 430079
  • 收稿日期:2020-08-16 修回日期:2021-02-18 发布日期:2021-06-28
  • 通讯作者: 李少华 E-mail:lish@yangtzeu.edu.cn
  • 作者简介:刘远刚(1982—),男,博士,副教授,研究方向为地理信息智能化处理与可视化。E-mail:liuygis@foxmail.com
  • 基金资助:
    国家自然科学基金(41701537;41871378);地理信息工程国家重点实验室开放基金(sklgie2016-z-4-1;sklgie2017-m-4-6)

An immune genetic algorithm to buildings displacement with constraint of safety zones

LIU Yuangang1, LI Shaohua1, CAI Yongxiang1, HE Zhenming1, MA Xiaoya1, LI Pengcheng1, GUO Qingsheng2, HE Zongyi1,2   

  1. 1. School of Geosciences, Yangtze University, Wuhan 430100, China;
    2. School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
  • Received:2020-08-16 Revised:2021-02-18 Published:2021-06-28
  • Supported by:
    The National Natural Science Foundation of China (Nos. 41701537;41871378);The Opened-end Fund of State Key Laboratory of Geo-information Engineering of China (Nos. sklgie2016-z-4-1;sklgie2017-m-4-6)

摘要: 对于采用启发式或群智能搜索的组合最优化移位算法,地图要素空间关系与空间分布特征的保持是一个难题。本文基于免疫遗传算法提出一种移位安全区约束下的建筑物群最优化移位方法。该方法将建筑物群的移位问题定义为一个多目标最优化问题,然后采用免疫遗传算法搜索最优解。为了尽量保持建筑物群的空间关系和总体分布特征,避免出现拓扑错误,采用Voronoi图和缓冲区构建每个建筑物的移位安全区,以限定建筑物的移位范围;同时,采用建筑物群组整体移位策略,保持局部空间分布模式。最后,以北京市某部分街区建筑物群的移位为例验证改进算法的有效性,结果表明所实现算法能够在解决邻近冲突的同时,较好地保持地图目标间的空间关系和空间分布特征。

关键词: 地图综合, 移位, 邻近冲突, 免疫遗传算法, 建筑物群

Abstract: For the combinatorial optimization displacement algorithms based on heuristic search or swarm intelligence, it is a difficult problem to maintain the spatial relationship and distribution characteristics of map features. This article proposes an optimal algorithm to buildings displacement based on immune genetic algorithm (IGA) with the constraint of safety zones. In the study, the displacement problem of buildings is defined as a multi-objective optimization problem, and then the immune genetic algorithm is used to search the optimal solution. In order to keep the spatial relationship and globe spatial distribution characteristics of buildings as far as possible and avoid topology errors, Voronoi diagram and buffer areas are used to construct the displacement safety zone of each building to limit the displacement range of buildings; meanwhile, the strategy to shift the building group as a whole is used to keep local building patterns. Finally, the effectiveness of the improved algorithm is verified by taking the displacement of buildings in a block of beijing as an example. The results indicate that the algorithm can not only solve the proximity conflicts, but also keep the spatial relationship and spatial distribution characteristics of map objects.

Key words: map generalization, displacement, proximity conflict, immune genetic algorithm, buildings

中图分类号: