测绘学报 ›› 2021, Vol. 50 ›› Issue (10): 1404-1415.doi: 10.11947/j.AGCS.2021.20200380

• 地图学与地理信息 • 上一篇    下一篇

基于主题模型的地理环境时空数据隐含语义理解

朱杰1,2, 张宏军1, 廖湘琳1, 田江鹏3   

  1. 1. 陆军工程大学指挥控制工程学院, 江苏 南京 210002;
    2. 73021部队, 浙江 杭州 315023;
    3. 信息工程大学地理空间信息学院, 河南 郑州 450001
  • 收稿日期:2020-08-10 修回日期:2021-01-15 发布日期:2021-11-09
  • 作者简介:朱杰(1983-),男,博士,工程师,研究方向为战场环境认知及战场位置服务的理论和方法。E-mail:zjsoldierlee@163.coml
  • 基金资助:
    中国博士后科学基金(2019M664028);国家自然科学基金(41701457)

Latent semantic understanding of geographical environment spatio-temporal data based on topic model

ZHU Jie1,2, ZHANG Hongjun1, LIAO Xianglin1, TIAN Jiangpeng3   

  1. 1. College of Command and Control Engineering, Army Engineering University of PLA, Nanjing 210002, China;
    2. 73021 Troops, Hangzhou 315023, China;
    3. Institute of Geospatial Information, Information Engineering University, Zhengzhou 450001, China
  • Received:2020-08-10 Revised:2021-01-15 Published:2021-11-09
  • Supported by:
    The China Postdoctoral Science Foundation (No. 2019M664028);The National Natural Science Foundation of China (No. 41701457)

摘要: 文本是战场信息的重要数据模态,从中挖掘地理环境时空语义信息是机器理解战场环境的重要方法,有助于扩展战场环境的空间认知与理解。本文设计一种基于主题模型,反映地理时空因素与事件主题之间语义关系的计算方法,通过信息抽取,挖掘主题要素相关信息,形成不同主题分类及其对应的特征词汇分布;将事件主题与地理时空语义特征建立联合分布模型,自动发现时间、空间与事件主题之间的相关性,从而生成地理时空隐含的语义主题。通过试验验证并结合应用实践,得到如下结论:利用事件主题与位置信息的关联,并应用空间分析方法探寻不同主题的时空分布规律,可为新事件的位置预测及趋利避害对策制定提供基础,从而拓展传统的地理事件主题分析。

关键词: 主题模型, 地理环境, 时空数据, 语义理解, 空间分析

Abstract: Text is an important data mode of battlefield information. Mining spatial-temporal semantic information of geographical environment from battlefield text is an important method for machine to understand battlefield environment, which is helpful to expand battlefield environment spatial cognition and understanding. A method based on topic model is designed to reflect the semantic relationship between geographical spatio-temporal factors and event topics, and different topic classification with its distribution of word features are formed by the method of information extraction to mine the relevant information of topic elements; the joint distribution model of event topic and geographical spatio-temporal semantic features is established to automatically discover the correlation among time, space and event topics, thus generating the latent geographical spatio-temporal semantic topics; through the experimental verification and the application practice, we believe that the law of spatio-temporal distribution under different topics can be seek by using correlation between the event topics and location information with spatial analysis method, so as to provide the basis for the location prediction of new events and the countermeasures of seeking advantages and avoiding disadvantages, and expand the traditional thematic analysis of geographical events.

Key words: topic model, geographical environment, spatio-temporal data, semantic understanding, spatial analysis

中图分类号: