[1] KLEPEIS N E, NELSON W C, OTT W R, et al. The national human activity pattern survey (NHAPS):a resource for assessing exposure to environmental pollutants[J]. Journal of Exposure Science&Environmental Epidemiology, 2001, 11(3):231-252. DOI:10.1038/sj.jea.7500165. [2] 中国移动.室内定位行业分析[EB/OL].(2021-12-20)[2022-05-21]. https://13115299.s2li.faiusr.com/61/1/ABUIABA9GAAgmeOFjgYosKXSnwY.pdf. China Mobile. Indoor Positioning White Book[EB/OL].(2021-12-20)[2022-05-21]. https://13115299.s2li.faiusr.com/61/1/ABUIABA9GAAgmeOFjgYosKXSnwY.pdf. [3] 陈锐志,陈亮.基于智能手机的室内定位技术的发展现状和挑战[J].测绘学报, 2017, 46(10):1316-1326. DOI:10.11947/j.AGCS.2017.20170383. CHEN Ruizhi, CHEN Liang. Indoor positioning with smartphones:the state-of-the-art and the challenges[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1316-1326. DOI:10.11947/j.AGCS.2017.20170383. [4] GUO Guangyi, CHEN Ruizhi, YE Feng, et al. Indoor smartphone localization:a hybrid Wi-Fi RTT-RSS ranging approach[J]. IEEE Access, 2019, 7:176767-176781. DOI:10.1109/ACCESS.2019.2957753. [5] YU Yue, CHEN Ruizhi, SHI Wenzhong, et al. Precise 3D indoor localization and trajectory optimization based on sparse Wi-Fi FTM anchors and built-in sensors[J]. IEEE Transactions on Vehicular Technology, 2022, 71(4):4042-4056. DOI:10.1109/TVT.2022.3147964. [6] YU Yue, CHEN Ruizhi, CHEN Liang, et al. H-WPS:hybrid wireless positioning system using an enhanced Wi-Fi FTM/RSSI/MEMS sensors integration approach[J]. IEEE Internet of Things Journal, 2021:1. DOI:10.1109/JIOT.2021.3132023. [7] HAMMERSCHMIDT J S, SASOGLU E. Time instant reference for ultra wideband systems:US, 10567034[P]. 2020-02-18. [8] 李政.个性化自动控制设备的方法、装置及计算机可读存储介质:CN, 111025920A[P]. 2020-04-17. LI Zheng. Personalized automatic equipment control method and device and computer readable storage medium:CN, 111025920A[P]. 2020-04-17. [9] HAN S M, KIM Y H, LEE S S, et al. Ultra wideband antenna for filtering predetermined frequency band signal and system for receiving ultra wideband signal using the same:US, 20060208954[P]. 2006-09-21. [10] Microsoft indoor localization competition-IPSN 2018[EB/OL].(2018-04-10)[2022-04-02]. https://www.microsoft.com/en-us/research/event/microsoft-indoor-localization-competition-ipsn-2018/. [11] XU Shihao, CHEN Ruizhi, GUO Guangyi, et al. Bluetooth, floor-plan, and MEMS assisted wide-area audio indoor localization system:apply to smartphones[J]. IEEE Transactions on Industrial Electronics, 2021, 46:1. DOI:10.1109/TIE.2021.3111561. [12] 陈锐志,郭光毅,叶锋,等.智能手机音频信号与MEMS传感器的紧耦合室内定位方法[J].测绘学报, 2021, 50(2):143-152. DOI:10.11947/j.AGCS.2021.20200551. CHEN Ruizhi, GUO Guangyi, YE Feng, et al. Tightly-coupled integration of acoustic signal and MEMS sensors on smartphones for indoor positioning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(2):143-152. DOI:10.11947/j.AGCS.2021.20200551. [13] LIU Tao, NIU Xiaoji, KUANG Jian, et al. Doppler shift mitigation in acoustic positioning based on pedestrian dead reckoning for smartphone[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70:9500211. DOI:10.1109/TIM.2020.3010384. [14] LIU Kaikai, LIU Xinxin, LI Xiaolin. Guoguo:Enabling fine-grained smartphone localization via acoustic anchors[J]. IEEE Transactions on Mobile Computing, 2016, 15(5):1144-1156. DOI:10.1109/TMC.2015.2451628. [15] CHEN Liang, ZHOU Xin, CHEN Feifei, et al. Carrier phase ranging for indoor positioning with 5G NR signals[J]. IEEE Internet of Things Journal, 2021:1. DOI:10.1109/JIOT.2021.3125373. [16] CHEN Ruizhi, PEI Ling, CHEN Yuwei. A smartphone based PDR solution for indoor navigation[C]//Proceedings of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation 2011. Portland, OR:Oregon Convention Center, 2011:1404-1408. [17] LIU Wenxin, CARUSO D, ILG E, et al. TLIO:tight learned inertial odometry[J]. IEEE Robotics and Automation Letters, 2020, 5(4):5653-5660. DOI:10.1109/LRA.2020.3007421. [18] SUN S, MELAMED D, KITANI K. IDOL:Inertial deep orientation-estimation and localization[J/OL]. 2021. http://arxiv.org/abs/2102.04024. [19] QIU Chao, XU Yuanzhuo, ZHU Yu, et al. MAGINS:neural network inertial navigation system corrected by magnetic information[C]//Proceedings of 2021 IEEE International Performance, Computing, and Communications Conference. Austin, TX:IEEE, 2021. DOI:10.1109/IPCCC51483.2021.9679402. [20] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Vegas, NV:IEEE. DOI:10.1109/CVPR.2016.90. [21] CHEN Changhao, LU Xiaoxuan, MARKHAM A, et al. IoNet:learning to cure the curse of drift in inertial odometry[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press, 2018. [22] HERATH S, YAN Hang, FURUKAWA Y. RoNIN:robust neural inertial navigation in the wild:benchmark, evaluations,&new methods[C]//Proceedings of 2020 IEEE International Conference on Robotics and Automation. Paris, France:IEEE, 2020. DOI:10.1109/ICRA40945.2020.9196860. [23] WANG Y, CHENG H, MENG M Q H. Pedestrain motion tracking by using inertial sensors on the smartphone[C]//Proceedings of 2020 IEEE Internation Conference on Intelligent Robots and Systems. Hamburg, Germany:IEEE, 2020. DOI:10.1109/IROS45743.2020.9341173. [24] MADGWICK S O H. An efficient orientation filter for inertial and inertial/magnetic sensor arrays[J]. Report x-io and University of Bristol (UK), 2010, 25:113-118. [25] LI Tiancheng, BOLIC'M, DJURIC'P M. Resampling methods for particle filtering:classification, implementation, and strategies[J]. IEEE Signal Processing Magazine, 2015, 32(3):70-86. DOI:10.1109/MSP.2014.2330626. [26] Decawave. Dwm1001-examples[EB/OL].[2022-04-02]. https://github.com/Decawave/dwm1001-examples. |