测绘学报 ›› 2022, Vol. 51 ›› Issue (7): 1172-1191.doi: 10.11947/j.AGCS.2022.20220149
张克非1, 李浩博2, 王晓明3, 朱丹彤1, 何琦敏4, 李龙江1, 胡安东5,6, 郑南山1, 李怀展1
收稿日期:
2022-02-28
修回日期:
2022-06-22
发布日期:
2022-08-13
作者简介:
张克非(1964-),男,博士,教授,博士生导师,研究方向为GNSS气象学,大地测量数据分析,太空资源勘测与应用,空间态势感知等。E-mail:profkzhang@cumt.edu.cn
基金资助:
ZHANG Kefei1, LI Haobo2, WANG Xiaoming3, ZHU Dantong1, HE Qimin4, LI Longjiang1, HU Andong5,6, ZHENG Nanshan1, LI Huaizhan1
Received:
2022-02-28
Revised:
2022-06-22
Published:
2022-08-13
Supported by:
摘要: 大气水汽是表征极端天气事件和气候变化的重要参数,准确监测与分析水汽含量对于精准预测各类灾害性天气事件与研究气候变化具有显著意义。作为新兴的大气水汽探测方法,GNSS大气水汽探测技术得到了广泛的关注与应用研究,随着多频多模GNSS系统的发展,全球服务能力的逐步完备和地面基础设施的不断加强,地基GNSS大气水汽探测遥感技术水平得到显著提升,为基于空间大数据揭示气候变化、极端天气过程提供了强有力的数据支撑和发展契机。本文首先系统阐述了GNSS大气水汽探测遥感技术及其应用的发展过程;然后介绍了近年来包括对流层延迟、大气可降水量等多类型GNSS大气参数高精度反演的研究进展,特别是对GNSS大气反演在极端天气短临预报及气候变化现象解释两个方向的研究工作进行了科学探析;最后,阐明了GNSS大气水汽探测遥感技术面临的主要挑战及未来研究展望。
中图分类号:
张克非, 李浩博, 王晓明, 朱丹彤, 何琦敏, 李龙江, 胡安东, 郑南山, 李怀展. 地基GNSS大气水汽探测遥感研究进展和展望[J]. 测绘学报, 2022, 51(7): 1172-1191.
ZHANG Kefei, LI Haobo, WANG Xiaoming, ZHU Dantong, HE Qimin, LI Longjiang, HU Andong, ZHENG Nanshan, LI Huaizhan. Recent progresses and future prospectives of ground-based GNSS water vapor sounding[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1172-1191.
[1] BEVIS M, BUSINGER S, HERRING T A, et al. GPS meteorology:remote sensing of atmospheric water vapor using the global positioning system[J]. Journal of Geophysical Research, 1992, 97(D14):15787-15801. [2] BRAUN J, ROCKEN C, LILJEGREN J. Comparisons of line-of-sight water vapor observations using the global positioning system and a pointing microwave radiometer[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(5):606-612. [3] BYUN S H, BAR-SEVER Y E. A new type of troposphere zenith path delay product of the international GNSS service[J]. Journal of Geodesy, 2009, 83(3-4):1-7. [4] EMARDSON T R, ELGERED G, JOHANSSON J M. Three months of continuous monitoring of atmospheric water vapor with a network of Global Positioning System receivers[J]. Journal of Geophysical Research:Atmospheres, 1998, 103(D2):1807-1820. [5] ROCKEN C, VAN HOVE T, JOHNSON J, et al. GPS/STORM-GPS sensing of atmospheric water vapor for meteorology[J]. Journal of Atmospheric and Oceanic Technology, 1995, 12(3):468-478. [6] WOLFE D E, GUTMAN S I. Developing an operational, surface-based, GPS, water vapor observing system for NOAA:network design and results[J]. Journal of Atmospheric and Oceanic Technology, 2000, 17(4):426-440. [7] 陈俊勇.地基GPS遥感大气水汽含量的误差分析[J].测绘学报, 1998, 27(2):22-27. CHEN Junyong. On the error analysis for the remote sensing of atmospheric water vapor by ground based GPS[J]. Acta Geodaetica et Cartographica Sinica, 1998, 27(2):22-27. [8] 李成才,毛节泰,李建国,等.全球定位系统遥感水汽总量[J].科学通报, 1999, 44(3):333-336. LI Chengcai, MAO Jietai, LI Jianguo, et al. Atmospheric precipitable water using global navigation satellite system[J]. Chinese Science Bulletin, 1999, 44(3):333-336. [9] 朱文耀,王小亚,熊永清,等.上海天文台GPS地面气象学研究和试验结果[C]//中国全球定位系统技术应用协会第六次年会论文集.北京:中国全球定位系统技术应用协会, 2001. ZHU Wenyao, WANG Xiaoya, XIONG Yongqing, et al. GPS meteorology in Shanghai astronomical observatiory[C]//Proceedings of 2001 Annual metting of GNSS and LBS Association of China. Beijing:China Global Positioning System Technology Application Association, 2001. [10] 丁金才,叶其欣.长江三角洲地区近实时GPS气象网[J].气象, 2003, 29(6):26-30. DING Jincai, YE Qixin. Near-real time GPS meteorological network in Yangtze river delta area[J]. Meteorological Monthly, 2003, 29(6):26-30. [11] 宋淑丽,朱文耀,丁金才,等.上海GPS网层析水汽三维分布改善数值预报湿度场[J].科学通报, 2005, 50(20):2271-2277. SONG Shuli, ZHU Wenyao, DING Jincai, et al. Improve the accuracy of the humidity field from numerical weather prediction model using the three-dimensional water vapor tomography result in Shanghai GNSS network[J]. Chinese Science Bulletin, 2005, 50(20):2271-2277. [12] 毕研盟,毛节泰,李成才,等.利用GPS的倾斜路径观测暴雨过程中的水汽空间分布[J].大气科学, 2006, 30(6):1169-1176. BI Yanmeng, MAO Jietai, LI Chengcai, et al. Spatial distribution of water vapor observed with GPS along slant path in a storm system[J]. Chinese Journal of Atmospheric Sciences, 2006, 30(6):1169-1176. [13] 宋伟伟.导航卫星实时精密钟差确定及实时精密单点定位理论方法研究[D].武汉:武汉大学, 2011. SONG Weiwei. Research on real-time clock offset determination and real-time precise point positioning[D]. Wuhan:Wuhan University, 2011. [14] 杨晓春,张鹏飞,王建鹏,等.基于精密单点定位的GPS水汽解算及应用[J].陕西气象, 2013, 3(3):28-30. YANG Xiaochun, ZHANG Pengfei, WANG Jianpeng, et al. Derivation and application of the water vapor based on GNSS precise point[J]. Journal of Shaanxi Meteorology, 2013, 3(3):28-30. [15] 朱爽,姚宜斌,张瑞.天顶对流层延迟计算方法研究[J].大地测量与地球动力学, 2011, 31(3):120-123. ZHU Shuang, YAO Yibin, ZHANG Rui. Research on calculation methods of zenith tropospheric delay[J]. Journal of Geodesy and Geodynamics, 2011, 31(3):120-123. [16] LI Xingxing, DICK G, GE Maorong, et al. Real-time GPS sensing of atmospheric water vapor:precise point positioning with orbit, clock, and phase delay corrections[J]. Geophysical Research Letters, 2014, 41(10):3615-3621. [17] LI Xingxing, TAN Han, LI Xin, et al. Real-time sensing of precipitable water vapor from BeiDou observations:Hong Kong and CMONOC networks[J]. Journal of Geophysical Research:Atmospheres, 2018, 123(15):7897-7909. [18] LU Cuixian, LI Xingxing, NILSSON T, et al. Real-time retrieval of precipitable water vapor from GPS and BeiDou observations[J]. Journal of Geodesy, 2015, 89(9):843-856. [19] LU Cuixian, LI Xingxing, ZUS F, et al. Improving BeiDou real-time precise point positioning with numerical weather models[J]. Journal of Geodesy, 2017, 91(9):1019-1029. [20] SUN Peng, ZHANG Kefei, WU Suqin, et al. Retrieving precipitable water vapor from real-time precise point positioning using VMF1/VMF3 forecasting products[J]. Remote Sensing, 2021, 13(16):3245. [21] TUNALI E. Water vapor monitoring with IGS RTS and GPT3/VMF3 functions over Turkey[J]. Advances in Space Research, 2022, 69(6):2376-2390. [22] 施闯,张卫星,曹云昌,等.基于北斗/GNSS的中国-中南半岛地区大气水汽气候特征及同降水的相关分析[J].测绘学报, 2020, 49(9):1112-1119. SHI Chuang, ZHANG Weixing, CAO Yunchang, et al. Atmospheric water vapor climatological characteristics over Indo-China region based on BeiDou/GNSS and relationships with precipitation[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9):1112-1119. [23] HE Jia, LIU Zhizhao. Applying the new MODIS-based precipitable water vapor retrieval algorithm developed in the north hemisphere to the south hemisphere[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:4100812. [24] ZHANG Bao, YAO Yibin. Precipitable water vapor fusion based on a generalized regression neural network[J]. Journal of Geodesy, 2021, 95(3):36. [25] ZHU Dantong, ZHANG Kefei, YANG Liu, et al. Evaluation and calibration of MODIS near-infrared precipitable water vapor over china using GNSS observations and ERA-5 reanalysis dataset[J]. Remote Sensing, 2021, 13(14):2761. [26] KRIETEMEYER A, TEN VELDHUIS M C, VAN DER MAREL H, et al. Potential of cost-efficient single frequency GNSS receivers for water vapor monitoring[J]. Remote Sensing, 2018, 10(9):1493. [27] DE OLIVEIRA MARQUES T, MÄKELÄ M, MONTLOIN L, et al. Towards tropospheric delay estimation using GNSS smartphone receiver network[J]. Advances in Space Research, 2021, 68(12):4794-4805. [28] GONG Yangzhao, LIU Zhizhao, FOSTER J H. Evaluating the accuracy of satellite-based microwave radiometer PWV products using shipborne GNSS observations across the Pacific Ocean[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:5802210. [29] SHOJI Y, SATO K, YABUKI M, et al. PWV retrieval over the ocean using shipborne GNSS receivers with MADOCA real-time orbits[J]. SOLA, 2016, 12:265-271. [30] FAN Shijie, ZANG Jianfei, PENG Xiuying, et al. Validation of atmospheric water vapor derived from ship-borne GPS measurements in the Chinese Bohai Sea[J]. Terrestrial Atmospheric and Oceanic Sciences, 2016, 27(2):213-220. [31] WU Zhilu, LIU Yanxiong, LIU Yang, et al. Validating HY-2A CMR precipitable water vapor using ground-based and shipborne GNSS observations[J]. Atmospheric Measurement Techniques, 2020, 13(9):4963-4972. [32] WU Zhilu, LU Cuixian, ZHENG Yuxin, et al. Evaluation of shipborne GNSS precipitable water vapor over global oceans from 2014 to 2018[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5802515. [33] SHOJI Y, SATO K, YABUKI M, et al. Comparison of shipborne GNSS-derived precipitable water vapor with radiosonde in the western North Pacific and in the seas adjacent to Japan[J]. Earth, Planets and Space, 2017, 69(1):153. [34] 王帅民.基于GNSS和再分析资料的ZTD/PWV精度评定与模型构建方法研究[D].济南:山东大学, 2021. WANG Shuaimin. Research on accuracy evaluation and model establishment of ZTD/PWV based on GNSS and reanalysis[D]. Jinan:Shandong University, 2021. [35] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T 33700-2017地基导航卫星遥感水汽观测规范[S].北京:中国标准出版社, 2017. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 33700-2017 Specification for the ground-based GNSS water vapor remote sensing observation[S]. Beijing:Standards Press of China, 2017. [36] ALBER C, WARE R, ROCKEN C, et al. Obtaining single path phase delays from GPS double differences[J]. Geophysical Research Letters, 2000, 27(17):2661-2664. [37] WARE R, ALBER C, ROCKEN C, et al. Sensing integrated water vapor along GPS ray paths[J]. Geophysical Research Letters, 1997, 24(4):417-420. [38] 范士杰,刘焱雄,高兴国,等.顾及星间单差残差的GPS斜路径水汽含量估计[J].武汉大学学报(信息科学版), 2012, 37(7):834-838. FAN Shijie, LIU Yanxiong, GAO Xingguo, et al. Estimate of GPS slant-path water vapor based on single-differenced residuals between satellites[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7):834-838. [39] 万蓉,付志康,李武阶,等.地基GPS斜路径水汽反演技术及资料应用初探[J].气象, 2015, 41(4):447-455. WAN Rong, FU Zhikang, LI Wujie, et al. Slant path water vapor retrieval with GPS and application in rainstorm analysis[J]. Meteorological Monthly, 2015, 41(4):447-455. [40] 张双成,刘经南,叶世榕,等.顾及双差残差反演GPS信号方向的斜路径水汽含量[J].武汉大学学报(信息科学版), 2009, 34(1):100-104. ZHANG Shuangcheng, LIU Jingnan, YE Shirong, et al. Retrieval of water vapor along the GPS slant path based on double-differenced residuals[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1):100-104. [41] BRAUN J, ROCKEN C, MEERTENS C, et al. Development of a water vapor tomography system using low cost L1 GPS receivers[C]//Proceedings of the 9th ARM Science Team Meeting Proceedings. San Antonio, Texas, 1999. [42] FLORES A, RUFFINI G, RIUS A. 4D tropospheric tomography using GPS slant wet delays[J]. Annales Geophysicae, 2000, 18(2):223-234. [43] CAO Yunchang, CHEN Yongqi, LI Pingwha. Wet refractivity tomography with an improved Kalman-filter method[J]. Advances in Atmospheric Sciences, 2006, 23(5):693-699. [44] HIRAHARA K. Local GPS tropospheric tomography[J]. Earth, Planets and Space, 2000, 52(11):935-939. [45] ROHM W, BOSY J. The verification of GNSS tropospheric tomography model in a mountainous area[J]. Advances in Space Research, 2011, 47(10):1721-1730. [46] BENDER M, DICK G, WICKERT J, et al. Estimates of the information provided by GPS slant data observed in Germany regarding tomographic applications[J]. Journal of Geophysical Research:Atmospheres, 2009, 114(D6):D06303. [47] SHANGGUAN M, BENDER M, RAMATSCHI M, et al. GPS tomography:validation of reconstructed 3D humidity fields with radiosonde profiles[J]. Annales Geophysicae, 2013, 31(9):1491-1505. [48] 丁楠.地基GNSS水汽层析关键技术研究[D].徐州:中国矿业大学, 2018. DING Nan. Study on the key technologies in ground-based GNSS tomography[D]. Xuzhou:China University of Mining and Technology, 2018. [49] YE Shirong, XIA Pengfei, CAI Changsheng. Optimization of GPS water vapor tomography technique with radiosonde and COSMIC historical data[J]. Annales Geophysicae, 2016, 34(9):789-799. [50] 何秀凤,詹伟,施宏凯.顾及边界信号及垂直约束的GNSS水汽层析方法[J].测绘学报, 2021, 50(7):853-862. HE Xiufeng, ZHAN Wei, SHI Hongkai. A GNSS water vapor tomography method considering boundary signals and vertical constraint[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7):853-862. [51] 张文渊,郑南山,张书毕,等.附加高水平分辨率PWV约束的GNSS水汽层析算法[J].武汉大学学报(信息科学版), 2021, 46(11):1627-1635. ZHANG Wenyuan, ZHENG Nanshan, ZHANG Shubi, et al. GNSS water vapor tomography algorithm constrained with high horizontal resolution PWV data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11):1627-1635. [52] YAO Yibin, ZHAO Qingzhi. A novel, optimized approach of voxel division for water vapor tomography[J]. Meteorology and Atmospheric Physics, 2017, 129(1):57-70. [53] YAO Yibin, ZHAO Qingzhi. Maximally using GPS observation for water vapor tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12):7185-7196. [54] ZHAO Qingzhi, ZHANG Kefei, YAO Yibin, et al. A new troposphere tomography algorithm with a truncation factor model (TFM) for GNSS networks[J]. GPS Solutions, 2019, 23(3):64. [55] ZHANG Wenyuan, ZHANG Shubi, CHANG Guobin, et al. A new hybrid observation GNSS tomography method combining the real and virtual inverted signals[J]. Journal of Geodesy, 2021, 95(12):128. [56] HEUBLEIN M, ALSHAWAF F, ERDNVß B, et al. Compressive sensing reconstruction of 3D wet refractivity based on GNSS and InSAR observations[J]. Journal of Geodesy, 2019, 93(2):197-217. [57] LIU Chen, YAO Yibin, XU Chaoqian. Conventional and neural network-based water vapor density model for GNSS troposphere tomography[J]. GPS Solutions, 2022, 26(1):4. [58] DING Nan, ZHANG Shubi, WU Suqin, et al. Adaptive node parameterization for dynamic determination of boundaries and nodes of GNSS tomographic models[J]. Journal of Geophysical Research:Atmospheres, 2018, 123(4):1990-2003. [59] WANG Hao, DING Nan, ZHANG Wenyuan. An adaptive non-uniform vertical stratification method for troposphere water vapor tomography[J]. Remote Sensing, 2021, 13(19):3818. [60] BAKER H C, DODSON A H, PENNA N T, et al. Ground-based GPS water vapour estimation:potential for meteorological forecasting[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2001, 63(12):1305-1314. [61] CHEN Biyan, LIU Zhizhao. Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of ECMWF and NCEP reanalyses, radiosonde, GPS, and microwave satellite[J]. Journal of Geophysical Research:Atmospheres, 2016, 121(19):11411-442462. [62] FERREIRA V G, MONTECINO H C, NDEHEDEHE C E, et al. Space-based observations of crustal deflections for drought characterization in Brazil[J]. Science of the Total Environment, 2018, 644:256-273. [63] GUO Min, ZHANG Hanwei, XIA Pengfei. A method for predicting short-time changes in fine particulate matter (PM2.5) mass concentration based on the global navigation satellite system zenith tropospheric delay[J]. Meteorological Applications, 2020, 27(1):e1866. [64] JONES J, GUEROVA G, DOUŠA J, et al. Advanced GNSS tropospheric products for monitoring severe weather events and climate:COST action ES1206 final action dissemination report[M]. Cham:Springer, 2020. [65] WANG Xiaoming, ZHANG Kefei, WU Suqin, et al. The correlation between GNSS-derived precipitable water vapor and sea surface temperature and its responses to El Niño-Southern Oscillation[J]. Remote Sensing of Environment, 2018, 216:1-12. [66] LI Haobo, WANG Xiaoming, WU Suqin, et al. An improved model for detecting heavy precipitation using GNSS-Derived zenith total delay measurements[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:5392-5405. [67] MANANDHAR S, DEV S, LEE Y H, et al. Systematic study of weather variables for rainfall detection[C]//Proceedings of 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain:IEEE, 2018. [68] CHOY S, ZHANG Kefei, WANG Chuansheng, et al. Remote sensing of the earth's lower atmosphere during severe weather events using GPS technology:a study in Victoria, Australia[C]//Proceedings of 2011 ION GNSS 2011. Portland, OR:IEEE, 2011. [69] SEKO H, KAWABATA T, TSUYUKI T, et al. Impacts of GPS-derived water vapor and radial wind measured by Doppler radar on numerical prediction of precipitation[J]. Journal of the Meteorological Society of Japan. Ser. Ⅱ, 2004, 82(1B):473-489. [70] SINGH R P, MISHRA N C, VERMA A, et al. Total precipitable water over the Arabian Ocean and the Bay of Bengal using SSM/I data[J]. International Journal of Remote Sensing, 2000, 21(12):2497-2503. [71] SINGH R P, DEY S, SAHOO A K, et al. Retrieval of water vapor using SSM/I and its relation with the onset of monsoon[J]. Annales Geophysicae, 2004, 22(8):3079-3083. [72] 李国平.地基GPS水汽监测技术及气象业务化应用系统的研究[J].大气科学学报, 2011, 34(4):385-392. LI Guoping. Research of remote sensing technology of atmospheric water vapor by using ground-based GPS and application system of meteorological operations[J]. Journal of Nanjing Institute of Meteorology, 2011, 34(4):385-392. [73] SAPUCCI L F, MACHADO L A T, DE SOUZA E M, et al. Global positioning system precipitable water vapour (GPS-PWV) jumps before intense rain events:a potential application to nowcasting[J]. Meteorological Applications, 2019, 26(1):49-63. [74] WANG Binyan, ZHAO Linna, BAI Xuemei. The characteristics investigation of ground-based GPS/PWV during the"7·21"extreme rainfall event in Beijing[M]//SUN Jiadong, LIU Jingnan, FAN Shiwei, et al. China Satellite Navigation Conference (CSNC)2015 Proceedings:Volume Ⅱ. Berlin, Heidelberg:Springer, 2015. [75] MADHULATHA A, RAJEEVAN M, RATNAM M V, et al. Nowcasting severe convective activity over southeast India using ground-based microwave radiometer observations[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(1):1-13. [76] BARINDELLI S, REALINI E, VENUTI G, et al. Detection of water vapor time variations associated with heavy rain in northern Italy by geodetic and low-cost GNSS receivers[J]. Earth, Planets and Space, 2018, 70(1):28. [77] ZHANG Kefei, MANNING T, WU Suqin, et al. Capturing the signature of severe weather events in australia using GPS measurements[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(4):1839-1847. [78] LI Haobo, WANG Xiaoming, CHOY S, et al. A new cumulative anomaly-based model for the detection of heavy precipitation using GNSS-derived tropospheric products[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:4105718. [79] LI Haobo, WANG Xiaoming, CHOY S, et al. Detecting heavy rainfall using anomaly-based percentile thresholds of predictors derived from GNSS-PWV[J]. Atmospheric Research, 2022, 265:105912. [80] YEH T K, SHIH H C, WANG Chuansheng, et al. Determining the precipitable water vapor thresholds under different rainfall strengths in Taiwan[J]. Advances in Space Research, 2018, 61(3):941-950. [81] YEH T K, HONG Jingshan, WANG Chuansheng, et al. Determining the precipitable water vapor with ground-based GPS and comparing its yearly variation to rainfall over Taiwan[J]. Advances in Space Research, 2016, 57(12):2496-2507. [82] ZHAO Qingzhi, YAO Yibin, YAO Wanqiang. GPS-based PWV for precipitation forecasting and its application to a typhoon event[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 167:124-133. [83] BONAFONI S, BIONDI R, BRENOT H, et al. Radio occultation and ground-based GNSS products for observing, understanding and predicting extreme events:a review[J]. Atmospheric Research, 2019, 230:104624. [84] MARSHALL J L, NORMAN R, HOWARD D, et al. Using global navigation satellite system data for real-time moisture analysis and forecasting over the Australian region I. the system[J]. Journal of Southern Hemisphere Earth Systems Science, 2019, 69(1):161-171. [85] SECO A, RAMÍREZ F, SERNA E, et al. Rain pattern analysis and forecast model based on GPS estimated atmospheric water vapor content[J]. Atmospheric Environment, 2012, 49:85-93. [86] MANANDHAR S, LEE Y H, MENG Yusong, et al. GPS-Derived PWV for rainfall nowcasting in tropical region[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8):4835-4844. [87] 单路路,姚宜斌,赵庆志,等.基于GNSS PWV的短临降雨预测方法[J].测绘地理信息, 2019, 44(1):22-26. SHAN Lulu, YAO Yibin, ZHAO Qingzhi, et al. A short-term rainfall forecasting method based on GNSS PWV data[J]. Journal of Geomatics, 2019, 44(1):22-26. [88] BENEVIDES P, CATALAO J, MIRANDA P M A. On the inclusion of GPS precipitable water vapour in the nowcasting of rainfall[J]. Natural Hazards and Earth System Sciences, 2015, 15(12):2605-2616. [89] YAO Yibin, SHAN Lulu, ZHAO Qingzhi. Establishing a method of short-term rainfall forecasting based on GNSS-derived PWV and its application[J]. Scientific Reports, 2017, 7(1):12465. [90] MANANDHAR S, LEE Y H, MENG Yusong. GPS-PWV based improved long-term rainfall prediction algorithm for tropical regions[J]. Remote Sensing, 2019, 11(22):2643. [91] ZHAO Qingzhi, LIU Yang, MA Xiongwei, et al. An improved rainfall forecasting model based on GNSS observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7):4891-4900. [92] LI Haobo, WANG Xiaoming, WU Suqin, et al. Development of an improved model for prediction of short-term heavy precipitation based on GNSS-Derived PWV[J]. Remote Sensing, 2020, 12(24):4101. [93] 李黎,匡翠林,朱建军,等.基于实时精密单点定位技术的暴雨短临预报[J].地球物理学报, 2012, 55(4):1129-1136. LI Li, KUANG Cuilin, ZHU Jianjun, et al. Rainstorm nowcasting based on GPS real-time precise point positioning technology[J]. Chinese Journal of Geophysics, 2012, 55(4):1129-1136. [94] ZHAO Qingzhi, YAO Yibin, YAO Wanqiang, et al. Real-time precise point positioning-based zenith tropospheric delay for precipitation forecasting[J]. Scientific Reports, 2018, 8(1):7939. [95] BRENOT H, WALPERSDORF A, REVERDY M, et al. A GPS network for tropospheric tomography in the framework of the Mediterranean hydrometeorological observatory Cévennes-Vivarais (southeastern France)[J]. Atmospheric Measurement Techniques, 2014, 7(2):553-578. [96] OS'M, SMOLAK K, GUEROVA G, et al. GNSS-based machine learning storm nowcasting[J]. Remote Sensing, 2020, 12(16):2536. [97] MANNING T, ZHANG K, ROHM W, et al. Detecting severe weather using GPS tomography:an Australian case study[J]. Journal of Global Positioning Systems, 2012, 11(1):59-70. [98] ZHAO Qingzhi, MA Xiongwei, YAO Yibin. Preliminary result of capturing the signature of heavy rainfall events using the 2D/4D water vapour information derived from GNSS measurement in Hong Kong[J]. Advances in Space Research, 2020, 66(7):1537-1550. [99] TOMASSINI M, GENDT G, DICK G, et al. Monitoring of integrated water vapour from ground-based GPS observations and their assimilation in a limited-area NWP model[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2002, 27(4-5):341-346. [100] ZUS F. Application of global positioning system slant path delay data for mesoscale modelverification and four-dimensional variational assimilation[D]. Hohenheim:University of Hohenheim, 2011. [101] KUO Y H, ZOU X, GUO Y. Variational assimilation of precipitable water using a nonhydrostatic mesoscale adjoint model. Part Ⅰ:moisture retrieval and sensitivity experiments[J]. Monthly Weather Review, 1996, 124(1):122-147. [102] KUO Y H, GUO Yongrun, WESTWATER E R. Assimilation of precipitable water measurements into a mesoscale numerical model[J]. Monthly Weather Review, 1993, 121(4):1215-1238. [103] 袁招洪,丁金才,陈敏. GPS观测资料应用于中尺度数值预报模式的初步研究[J].气象学报, 2004, 62(2):200-212. YUAN Zhaohong, DING Jincai, CHEN Min. Preliminary study on applying GPS observations to mesoscale numerical weather prediction model[J]. Acta Meteorologica Sinica, 2004, 62(2):200-212. [104] DE PONDECA M S F V, ZOU Xiaolei. A case study of the variational assimilation of GPS zenith delay observations into a mesoscale model[J]. Journal of Applied Meteorology, 2001, 40(9):1559-1576. [105] DE PONDECA M S F V, ZOU Xiaolei. Moisture retrievals from simulated zenith delay" observations"and their impact on short-range precipitation forecasts[J]. Tellus A:Dynamic Meteorology and Oceanography, 2001, 53(2):192-214. [106] CUCURULL L, VANDENBERGHE F, BARKER D, et al. Three-dimensional variational data assimilation of ground-based GPS ZTD and meteorological observations during the 14 December 2001 storm event over the western mediterranean sea[J]. Monthly Weather Review, 2004, 132(3):749-763. [107] CUCURULL L, DERBER J C, TREADON R, et al. Assimilation of global positioning system radio occultation observations into NCEP's global data assimilation system[J]. Monthly Weather Review, 2007, 135(9):3174-3193. [108] ERESMAA R, JÄRVINEN H. An observation operator for ground-based GPS slant delays[J]. Tellus A:Dynamic Meteorology and Oceanography, 2006, 58(1):131-140. [109] JÄRVINEN H, ERESMAA R, VEDEL H, et al. A variational data assimilation system for ground-based GPS slant delays[J]. Quarterly Journal of the Royal Meteorological Society, 2007, 133(625):969-980. [110] BAUER P, LOPEZ P, BENEDETTI A, et al. Implementation of 1D+4D-Var assimilation of precipitation-affected microwave radiances at ECMWF. I:1D-Var[J]. Quarterly Journal of the Royal Meteorological Society, 2006, 132(620):2277-2306. [111] SEKO H, KAWABATA T, TSUYUKI T, et al. Impacts of GPS-derived water vapor and radial wind measured by Doppler radar on numerical prediction of precipitation[J]. Journal of the Meteorological Society of Japan. Ser. II, 2004, 82(1B):473-489. [112] HANNA N, TRZCINA E, MÖLLER G, et al. Assimilation of GNSS tomography products into the weather research and forecasting model using radio occultation data assimilation operator[J]. Atmospheric Measurement Techniques, 2019, 12(9):4829-4848. [113] TRZCINA E, HANNA N, KRYZA M, et al. TOMOREF operator for assimilation of GNSS tomography wet refractivity fields in WRF DA system[J]. Journal of Geophysical Research:Atmospheres, 2020, 125(17):e2020JD032451. [114] BENNITT G V, JUPP A. Operational assimilation of GPS zenith total delay observations into the met office numerical weather prediction models[J]. Monthly Weather Review, 2012, 140(8):2706-2719. [115] DE HAAN S. Assimilation of GNSS ZTD and radar radial velocity for the benefit of very-short-range regional weather forecasts[J]. Quarterly Journal of the Royal Meteorological Society, 2013, 139(677):2097-2107. [116] MILE M, BENÁČEK P, RÓZSA S. The use of GNSS zenith total delays in operational AROME/Hungary 3D-var over a central European domain[J]. Atmospheric Measurement Techniques, 2019, 12(3):1569-1579. [117] ROHM W, GUZIKOWSKI J, WILGAN K, et al. 4DVAR assimilation of GNSS zenith path delays and precipitable water into a numerical weather prediction model WRF[J]. Atmospheric Measurement Techniques, 2019, 12(1):345-361. [118] 陈敏,范水勇,仲跻芹,等.全球定位系统的可降水量资料在北京地区快速更新循环系统中的同化试验[J].气象学报, 2010, 68(4):450-463. CHEN Min, FAN Shuiyong, ZHONG Jiqin, et al. An experimental study of assimilating the global position system-precipitable water vapor observations into the rapid updated cycle system for the Beijing area[J]. Acta Meteorologica Sinica, 2010, 68(4):450-463. [119] 丁金才,袁招洪,杨引明,等. bbGPS/PWV资料三维变分同化改进MM5降水预报连续试验的评估[J].气象, 2007, 33(6):11-18. DING Jincai, YUAN Zhaohong, YANG Yinming, et al. Evaluation of the continuous experiment of 3-dimentional variation assimilation of GPS/PWV data into MM5 model to improve the precipitation forecasts[J]. Meteorological Monthly, 2007, 33(6):11-18. [120] 顾莹,日下博幸,束炯,等.实时GPS可降水量资料的变分同化个例研究[J].气象科学, 2010, 30(2):172-178. GU Ying, KUSAKA H, SHU Jiong, et al. A case study of variational assimilation of true real-time GPS precipitable water[J]. Scientia Meteorologica Sinica, 2010, 30(2):172-178. [121] 万文龙,张杰,朱克云,等. GPS-PW资料在川西暴雨中的应用研究[J].安徽农业科学, 2010, 38(13):6759-6764. WAN Wenlong, ZHANG Jie, ZHU Keyun, et al. Study on the application of GPS-PW data in the rainstorm in western Sichuan[J]. Journal of Anhui Agricultural Sciences, 2010, 38(13):6759-6764. [122] 朱丰,徐国强,李莉,等.同化青藏高原地区GPSPW数据对长江中下游地区降水预报的影响评估[J].大气科学, 2014, 38(1):171-189. ZHU Feng, XU Guoqiang, LI Li, et al. An assessment of the impact on precipitation prediction in the middle and lower reaches of the Yangtze river made by assimilating GPSPWV data in the Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(1):171-189. [123] 朱男男,沈桐立,朱伟军.一次降水过程的GPS可降水量资料同化试验[J].南京气象学院学报, 2008, 31(1):26-32. ZHU Nannan, SHEN Tongli, ZHU Weijun. An adjoint assimilation experiment of GPS precipitable water[J]. Journal of Nanjing Institute of Meteorology, 2008, 31(1):26-32. [124] TRZCINA E, ROHM W. Estimation of 3D wet refractivity by tomography, combining GNSS and NWP data:first results from assimilation of wet refractivity into NWP[J]. Quarterly Journal of the Royal Meteorological Society, 2019, 145(720):1034-1051. [125] BENEVIDES P, CATALAO J, NICO G. Neural network approach to forecast hourly intense rainfall using GNSS precipitable water vapor and meteorological sensors[J]. Remote Sensing, 2019, 11(8):966. [126] BONIFACE K, DUCROCQ V, JAUBERT G, et al. Impact of high-resolution data assimilation of GPS zenith delay on Mediterranean heavy rainfall forecasting[J]. Annales Geophysicae, 2009, 27(7):2739-2753. [127] BOUKABARA S A, KRASNOPOLSKY V, PENNY S G, et al. Outlook for exploiting artificial intelligence in the earth and environmental sciences[J]. Bulletin of the American Meteorological Society, 2021, 102(5):E1016-E1032. [128] CAO Yujing, GUO Hang, LIAO Rongwei, et al. Analysis of water vapor characteristics of regional rainfall around Poyang lake using ground-based GPS observations[J]. Acta Geodaetica et Geophysica, 2016, 51(3):467-479. [129] GAGNE Ⅱ D J, HAUPT S E, NYCHKA D W, et al. Interpretable deep learning for spatial analysis of severe hailstorms[J]. Monthly Weather Review, 2019, 147(8):2827-2845. [130] REICHSTEIN M, CAMPS-VALLS G, STEVENS B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566(7743):195-204. [131] SANGIORGIO M, BARINDELLI S, BIONDI R, et al. Improved extreme rainfall events forecasting using neural networks and water vapor measures[C]//Proceedings of the 6th International Conference on Time Series and Forecasting. Granada, Spain:[s.n.], 2019. [132] 李永华,刘德,金龙.基于BP神经网络的汛期降水预测模型研究[J].气象科学, 2002, 22(4):461-467. LI Yonghua, LIU De, JIN Long. Study on rainfall prediction model in rain season based on BP neural network[J]. Scientia Meteorologica Sinica, 2002, 22(4):461-467. [133] 吴清佳,张庆平,万健.遗传神经网络的智能天气预报系统[J].计算机工程, 2005, 31(14):176-177, 189. WU Qingjia, ZHANG Qingping, WAN Jian. Application of ANN in weather forecast[J]. Computer Engineering, 2005, 31(14):176-177, 189. [134] 艾艳.短期降水预报BP神经网络预报方法研究[D].郑州:郑州大学, 2004. AI Yan. Study on the short-term rainfall prediction based on BP neural network[D]. Zhengzhou:Zhengzhou University, 2004. [135] 潘璇.基于神经网络的多模式天气集成预报研究[D].天津:天津科技大学, 2014. PAN Xuan. Research of multi-model integration weather forecast based on neural network[D]. TianJin:Tianjin University of Science and Technology, 2014. [136] 焦阳.基于卫星遥感图像的降雨监测系统[D].南京:南京信息工程大学, 2013. JIAO Yang. Rainfall monitoring system based on satellite remote sensing image[D]. Nanjing:Nanjing University of Information Science and Technology, 2013. [137] MANANDHAR S, DEV S, LEE Y H, et al. A data-driven approach for accurate rainfall prediction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11):9323-9331. [138] LIU Yang, ZHAO Qingzhi, YAO Wanqiang, et al. Short-term rainfall forecast model based on the improved BP-NN algorithm[J]. Scientific Reports, 2019, 9(1):19751. [139] BURKE A, SNOOK N, GAGNE II D J, et al. Calibration of machine learning-based probabilistic hail predictions for operational forecasting[J]. Weather and Forecasting, 2020, 35(1):149-168. [140] LI Haobo, WANG Xiaoming, ZHANG Kefei, et al. A neural network-based approach for the detection of heavy precipitation using GNSS observations and surface meteorological data[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 225:105763. [141] WANG Junhong, ZHANG Liangying, DAI Aiguo, et al. A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements[J]. Journal of Geophysical Research:Atmospheres, 2007, 112(D11):D11107. [142] ALSHAWAF F, FUHRMANN T, KNÖPFLER A, et al. Accurate estimation of atmospheric water vapor using GNSS observations and surface meteorological data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7):3764-3771. [143] 马赛,岳迎春,上官明,等.基于GNSS的MODIS大气可降水量校正模型[J].南京信息工程大学学报, 2021, 13(2):154-160. MA Sai, YUE Yingchun, SHANGGUAN Ming, et al. A correction model for MODIS precipitable water vapor based on GNSS data[J]. Journal of Nanjing University of Information Science&Technology, 2021, 13(2):154-160. [144] GUEROVA G, JONES J, DOUŠA J, et al. Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe[J]. Atmospheric Measurement Techniques, 2016, 9(11):5385-5406. [145] ZHANG Weixing, LOU Yidong, HAASE J S, et al. The use of ground-based GPS precipitable water measurements over China to assess radiosonde and ERA-interim moisture trends and errors from 1999 to 2015[J]. Journal of Climate, 2017, 30(19):7643-7667. [146] VENEMA V K C, MESTRE O, AGUILAR E, et al. Benchmarking homogenization algorithms for monthly data[J]. Climate of the Past, 2012, 8(1):89-115. |
[1] | 乔刚, 郝彤, 李洪伟, 陆平, 安璐, 陈秋杰, 李荣兴. 全球气候变化背景下极地冰盖关键参数遥感观测验证[J]. 测绘学报, 2022, 51(4): 599-611. |
[2] | 施闯, 张卫星, 曹云昌, 楼益栋, 梁宏, 范磊, C SATIRAPOD, C TRAKOLKUL. 基于北斗/GNSS的中国-中南半岛地区大气水汽气候特征及同降水的相关分析[J]. 测绘学报, 2020, 49(9): 1112-1119. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||