[1] 联合国. 联合国可持续发展目标[EB/OL].[2022-02-28]. https://www.unescap.org/sites/default/files/SDG%20Goals%20Booklet_Chinese.pdf. United Nations. The sustainable development goals report[EB/OL].[2022-02-28]. https://www.unescap.org/sites/default/files/SDG%20Goals%20Booklet_Chinese.pdf. [2] 联合国. 联合国可持续发展目标报告[EB/OL].[2022-02-28]. https://unstats.un.org/sdgs/report/2020/The-Sustainable-Development-Goals-Report-2020_Chinese.pdf. United Nations. The sustainable development goals report[EB/OL].[2022-02-28]. https://unstats.un.org/sdgs/report/2020/The-Sustainable-Development-Goals-Report-2020_Chinese.pdf. [3] SCAR. Antarctic climate change and the environment: a progress report[EB/OL].[2022-02-28]. https://www.scar.org/scar-library/search/policy/Antarctic-treaty/atcm-xxxi-and-cep-xi-2008/2895-atcm31-ip062/. [4] SCAR. SCAR report 2019/2020 “climate change and CCAMLR” to CCAMLR[EB/OL].[2022-02-28]. https://www.scar.org/scar-library/search/policy/commission-for-the-conservation-of-antarctic-marine-living-resources-ccamlr/scar-annual-reports-to-ccamlr/5582-scar-report-2019-2020-climate-change-and-ccamlr-to-ccamlr/. [5] IPCC. Climate change 2021: the physical science basis. contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[EB/OL].[2022-02-28]. https://www.ipcc.ch/assessment-report/ar6/. [6] LI Xin, CHE Tao, LI Xinwu, et al. CASEarth poles: big data for the three poles[J]. Bulletin of the American Meteorological Society, 2020, 101(9): E1475-E1491. [7] 车涛, 李新, 李新武, 等. 冰冻圈遥感:助力“三极”大科学计划[J]. 中国科学院院刊, 2020, 35(4): 484-493. CHE Tao, LI Xin, LI Xinwu, et al. Developing cryospheric remote sensing, promoting scientific programme of earth's three poles[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(4): 484-493. [8] SMITH B, FRICKER H A, GARDNER A S, et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes[J]. Science, 2020, 368(6496): 1239-1242. [9] 李荣兴, 张寅生, 汪汉胜, 等. 冰冻圈和极地环境变化关键参数观测与反演[J]. 中国基础科学, 2017, 19(5): 1-5,11. LI Rongxing, ZHANG Yinsheng, WANG Hansheng, et al. Observation and inversion of key parameters of cryospheric and polar environment changes[J]. China Basic Science, 2017, 19(5): 1-5,11. [10] 秦大河, 任贾文, 康世昌. 中国南极冰川学研究 10 年回顾与展望[J]. 冰川冻土, 1998(3):35-40. QIN Dahe, REN Jiawen, KANG Shichang. Retrospect and prospect on the study of Antarctic glaciology in China in the last 10 years[J]. Journal of Glaciology and Geocryology, 1998(3):35-40. [11] WALKER C C, BECKER M K, FRICKER H A. A high resolution, three-dimensional view of the D-28 calving event from amery ice shelf with ICESat-2 and satellite imagery[J]. Geophysical Research Letters, 2021, 48(3): e2020GL091200. [12] QIAO Gang, LI Yanjun, GUO Song, et al. Evolving instability of the scar inlet ice shelf based on sequential landsat images spanning 2005—2018[J]. Remote Sensing, 2019, 12(1): 36. [13] CHENG Yuan, XIA Menglian, QIAO Gang, et al. Imminent calving accelerated by increased instability of the Brunt Ice Shelf, in response to climate warming[J]. Earth and Planetary Science Letters, 2021, 572: 117132. [14] CHENG Yuan, XIA Menglian, QIAO Gang, et al. Calving cycle of Ninnis glacier over the last 60 years[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 105: 102612. [15] 郝彤, 王晓峰, 冯甜甜, 等. 地球系统多尺度关键区域与关键过程的智能化测绘[J]. 测绘学报, 2021, 50(8): 1084-1095. DOI: 10.11947/j.AGCS.2021.20210109. HAO Tong, WANG Xiaofeng, FENG Tiantian, et al. Intelligent and multi-scale surveying of key areas and processes of the Earth system[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1084-1095. DOI: 10.11947/j.AGCS.2021.20210109. [16] YANG Yuande, KE Hao, WANG Zemin, et al. Decadal GPS-derived ice surface velocity along the transect from Zhongshan station to and around Dome Argus, East Antarctica, 2005-16[J]. Annals of Glaciology, 2018, 59(76pt1): 1-9. [17] RIGNOT E, MOUGINOT J, SCHEUCHL B. Ice flow of the Antarctic ice sheet[J]. Science, 2011, 333(6048): 1427-1430. [18] BARTHOLOMEW I, NIENOW P, SOLE A, et al. Short-term variability in Greenland ice sheet motion forced by time-varying meltwater drainage: implications for the relationship between subglacial drainage system behavior and ice velocity[J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F3): F03002. [19] VAN WESSEM J M, REIJMER C H, MORLIGHEM M, et al. Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model[J]. Journal of Glaciology, 2014, 60(222): 761-770. [20] LIU Yan, MOORE J C, CHENG Xiao, et al. Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves[J]. Proceedings of the National Academy of Sciences, 2015, 112(11): 3263-3268. [21] GAGLIARDINI Olivier. The health of Antarctic ice shelves[J]. Nature Climate Change, 2018, 8(1): 15-16. [22] EDWARDS T L, BRANDON M A, DURAND G, et al. Revisiting Antarctic ice loss due to marine ice-cliff instability[J]. Nature, 2019, 566(7742): 58-64. [23] CHAMPOLLION N, PICARD G, ARNAUD L, et al. Marked decrease in the near-surface snow density retrieved by AMSR-E satellite at Dome C, Antarctica, between 2002 and 2011[J]. The Cryosphere, 2019, 13(4): 1215-1232. [24] ZHANG Shuangcheng, ZHOU Meiling, WANG Yajie, et al. Ground-based GPS used in the snow depth survey of Greenland [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(2): 47-55.DOI: 10.11947/j.JGGS.2021.0205. [25] XIE Huan, LI Rongxing, TONG Xiaohua, et al. A comparative study of changes in the Lambert Glacier/Amery ice shelf system, east Antarctica, during 2004—2008 using gravity and surface elevation observations[J]. Journal of Glaciology, 2016, 62(235): 888-904. [26] 陈雷. 基于卫星测高数据的南极典型区域冰盖质量变化研究[D]. 上海: 同济大学, 2017. CHEN Lei. Mass balance of Antarctic ice sheet in typical areas based on altimetric data [D]. Shanghai: Tongji University, 2017. [27] 杨树瑚, 顾祈明, 张云, 等. 利用冰雷达诊断南极冰盖底部环境的研究综述[J]. 极地研究, 2016, 28(2): 277-286. YANG Shuhu, GU Qiming, ZHANG Yun, et al. A review of the use of ice penetrating radar to diagnose the subglacial environments[J]. Chinese Journal of Polar Research, 2016, 28(2): 277-286. [28] MORLIGHEM M, RIGNOT E, SEROUSSI H, et al. A mass conservation approach for mapping glacier ice thickness[J]. Geophysical Research Letters, 2011, 38(19): L19503. [29] 陈军, 柯长青. 南极冰盖表面冰流速研究综述[J]. 极地研究, 2015, 27(1): 115-124. CHEN Jun, KE Changqing. Research progress on ice velocity of Antarctic ice sheet[J]. Chinese Journal of Polar Research, 2015, 27(1): 115-124. [30] 季青原, 王帮兵, 孙波. PISM冰盖模式对Amery冰架流速场模拟的适用性[J]. 极地研究, 2015, 27(3): 229-236. JI Qingyuan, WANG Bangbing, SUN Bo. Applicability pism for velocity analysis of the Amery ice shelf,east Antarctica[J]. Chinese Journal of Polar Research, 2015, 27(3): 229-236. [31] SHEN Qiang, WANG Hansheng, SHUM C K, et al. Recent high-resolution Antarctic ice velocity maps reveal increased mass loss in Wilkes Land, East Antarctica[J]. Scientific reports, 2018, 8(1): 1-8. [32] LI Rongxing, YE Wenkai, QIAO Gang, et al. A new analytical method for estimating Antarctic ice flow in the 1960s from historical optical satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2771-2785. [33] YE Wenkai, QIAO Gang, KONG Fansi, et al. Improved geometric modeling of 1960s KH-5 ARGON satellite images for regional Antarctica applications[J]. Photogrammetric Engineering & Remote Sensing, 2017, 83(7): 477-491. [34] LUO S, CHENG Y, LI Z, et al. Ice flow velocity mapping in east Antarctica using historical images from 1960s to 1980s: recent progress[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2021, 43: 491-496. [35] 陈嘉晋. 粒雪层密实化模型及改正对南极质量平衡估算影响研究[D]. 上海: 同济大学, 2020. CHEN Jiajin. The research of the Antarctic mass change evaluation caused by FIRN compaction modelling correction[D]. Shanghai: Tongji University, 2020. [36] TONBOE R T, DYBKLER G, HOYER J L. Simulations of the snow covered sea ice surface temperature and microwave effective temperature[J]. Tellus A: Dynamic Meteorology and Oceanography, 2011, 63(5): 1028-1037. [37] 国家海洋局.“中国的南极事业”白皮书[R]. 北京:国家海洋局,2017. State Oceanic Administration, People's Republic of China. White Paper on China's Antarctic Programs [R]. Beijing:State Oceanic Administration, People's Republic of China,2017. [38] MARKUS T, NEUMANN T, MARTINO A, et al. The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation[J]. Remote sensing of environment, 2017, 190: 260-273. [39] NEUMANN T A, MARTINO A J, MARKUS T, et al. The ice, cloud, and land elevation satellite-2 mission: a global geolocated photon product derived from the advanced topographic laser altimeter system[J]. Remote Sensing of Environment, 2019, 233: 111325. [40] BRUNT K M, NEUMANN T A, SMITH B E. Assessment of ICESat-2 ice sheet surface heights, based on comparisons over the interior of the Antarctic ice sheet[J]. Geophysical Research Letters, 2019, 46(22): 13072-13078. [41] NEUMANN T, BRUNT K, MARGUDER L, et al. Validation activities for the ice, cloud, and land elevation satellite-2 (ICESat-2) mission[C]//Proceedings of 2020 EGU General Assembly Conference Abstracts. Vienna, Austria: Copernicus GmbH, 2020: 20671. [42] LI Rongxing, LI Hongwei, HAO Tong, et al. Assessment of ICESat-2 ice surface elevations over the Chinese Antarctic research expedition (CHINARE) route, east Antarctica, based on coordinated multi-sensor observations[J]. The Cryosphere, 2021, 15(7): 3083-3099. [43] LI Jun, ZWALLY H J. Response times of ice-sheet surface heights to changes in the rate of Antarctic firn compaction caused by accumulation and temperature variations[J]. Journal of Glaciology, 2015, 61(230): 1037-1047. [44] HUI Fengming, ZHAO Tiancheng, LI Xinqing, et al. Satellite-based sea ice navigation for Prydz Bay, east Antarctica[J]. Remote Sensing, 2017, 9(6): 518. [45] LI Xinqing, OUYANG Lunxi, HUI Fengming, et al. An improved automated method to detect landfast ice edge off Zhongshan station using SAR imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(12): 4737-4746. [46] 孙波, 唐学远, 肖恩照, 等. 南极机场冰雪跑道工程技术发展现状与展望[J]. 中国工程科学, 2021, 23(2): 161-168. SUN Bo, TANG Xueyuan, XIAO Enzhao, et al. Ice and snow runway engineering in the Antarctica: current status and prospect[J]. Strategic Study of CAE, 2021, 23(2): 161-168. [47] CUI Xiangbin, LIU Jiaxin, TIAN Yixiang, et al. GIS-supported airfield selection near Zhongshan station, east Antarctica, based on multi-mission remote sensing data[J]. Marine Geodesy, 2019, 42(5): 422-446. [48] TAPLEY B D, BETTADPUR S, RIES J C, et al. GRACE measurements of mass variability in the Earth system[J]. Science, 2004, 305(5683): 503-505. [49] CHEN Qiujie, SHEN Yunzhong, KUSCHE J, et al. High-resolution GRACE monthly spherical harmonic solutions[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(1): e2019JB018892. |