测绘学报 ›› 2022, Vol. 51 ›› Issue (7): 1317-1337.doi: 10.11947/j.AGCS.2022.20220171

• 摄影测量学与遥感 • 上一篇    下一篇

数据驱动的多源遥感信息融合研究进展

张良培1, 何江2, 杨倩倩2, 肖屹2, 袁强强2   

  1. 1. 武汉大学测绘遥感信息工程国家重点实验室, 湖北 武汉 430079;
    2. 武汉大学测绘学院, 湖北 武汉 430079
  • 收稿日期:2022-02-28 修回日期:2022-07-11 发布日期:2022-08-13
  • 通讯作者: 袁强强 E-mail:qqyuan@sgg.whu.edu.cn
  • 作者简介:张良培(1962-),男,博士,教授,研究方向为遥感信息处理与应用。E-mail:zlp62@whu.edu.cn
  • 基金资助:
    国家自然科学基金(41922008;61971319)

Data-driven multi-source remote sensing data fusion: progress and challenges

ZHANG Liangpei1, HE Jiang2, YANG Qianqian2, XIAO Yi2, YUAN Qiangqiang2   

  1. 1. State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430079, China;
    2. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
  • Received:2022-02-28 Revised:2022-07-11 Published:2022-08-13
  • Supported by:
    The National Natural Science Foundation of China (Nos. 41922008|61971319)

摘要: 多源遥感信息融合技术是突破单一传感器的观测局限,实现多平台多模态观测信息互补利用,生成大场景高“时-空-谱”无缝的观测数据的重要手段。随着人工智能理论与技术的日益完善,数据驱动的多源遥感信息融合获得了研究者的广泛青睐,然而,数据驱动算法与生俱来的低物理可解释性,弱泛化能力都阻碍了其在多源遥感信息融合领域的长远发展。因此,本文分别对同质遥感数据融合,异质遥感数据融合,以及点-面融合的有关研究成果进行了系统的梳理和归纳,分析了各融合问题的发展趋势。最后,对算法研究进展进行了总结,剖析了数据驱动的融合算法所面临的挑战,指出了未来多源遥感信息融合领域的研究方向。

关键词: 遥感, 多源融合, 信息融合, 数据驱动, 模型驱动, 深度学习

Abstract: Multi-source remote sensing data fusion is an important technology to generate seamless observation data of large scene with a high temporal-spatial-spectral resolution, which breaks through the limitation of single sensor observation and realize the complementary utilization of multi-platform and multi-mode observation data. With the improvement of artificial intelligence theory and technology, data-driven multi-source remote sensing data fusion has been widely favored by researchers. However, the inherent low physical interpretability and weak generalization ability of data-driven algorithms have impeded its further development in multi-source remote sensing data fusion. Therefore, this paper systematically summarizes the researches of homogeneous remote sensing data fusion, heterogeneous remote sensing data fusion and point-surface fusion through three sections, and analyzes the trend of each fusion problem. Finally, this paper discusses the challenges faced by data-driven fusion algorithm, and points out some feasible future directions of multi-source remote sensing data fusion, which provides some suggestions for researchers in this field.

Key words: remote sensing, multi-source fusion, information fusion, data-driven, model-driven, deep learning

中图分类号: