[1] 王厚祥, 李进杰.海图制图综合[M]. 北京:测绘出版社, 1999. WANG Houxiang, LI Jinjie. Generalization of nautical charts[M]. Beijing:Surveying and Mapping Press, 1999. [2] 刘欢, 谢三德, 王芳. 海岸线自动综合方法综述[J]. 测绘科学技术学报, 2010, 27(3):225-228. LIU Huan, XIE Sande, WANG Fang. Study on the method of automatic cartographic generalization of coastline[J]. Journal of Geomatics Science and Technology, 2010, 27(3):225-228. [3] 刘颖, 翟京生. 海岸线形态的表达与自动综合[J]. 测绘与空间地理信息, 2005, 28(4):78-81. LIU Ying, ZHAI Jingsheng. The research on pattern presentation and automatic generalization of coastlines[J]. Geomatics & Spatial Information Technology, 2005, 28(4):78-81. [4] 陈惠荣, 彭认灿, 郑义东, 等. 以弯曲骨架线为化简指标的海岸线综合方法[J]. 武汉大学学报(信息科学版), 2011, 36(12):1418-1422. CHEN Huirong, PENG Rencan, ZHENG Yidong, et al. Coastline generalization based on skeleton line of curve bends[J]. Geomatics and Information Science of Wuhan University, 2011, 36(12):1418-1422. [5] 张立华, 唐露露, 贾帅东, 等. 多条海岸线协同化简的层次化三角网分区法[J]. 测绘学报, 2019, 48(4):520-531.DOI:10.11947/j.AGCS.2019.20180382. ZHANG Lihua, TANG Lulu, JIA Shuaidong, et al. A collaborative simplification method for multiple coastlines based on the hierarchical triangulation network partition[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(4):520-531. DOI:10.11947/j.AGCS.2019.20180382. [6] 杜佳威, 武芳, 李靖涵, 等. 一种河口湾海岸线渐进化简方法[J]. 测绘学报, 2018, 47(4):547-556.DOI:10.11947/j.AGCS.2018.20170440. DU Jiawei, WU Fang, LI Jinghan, et al. A progressive simplification method for the estuary coastline[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(4):547-556. DOI:10.11947/j.AGCS.2018.20170440. [7] 黄亚锋, 艾廷华, 刘耀林, 等. 顾及地理特征保持的溺谷海岸线化简算法[J]. 测绘学报, 2013, 42(4):595-601. HUANG Yafeng, AI Tinghua, LIU Yaolin, et al. Geographic-feature oriented ria coastline simplification[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(4):595-601. [8] 国家质量技术监督局. 中国航海图编绘规范:GB 12320-1998[S]. 北京:中国标准出版社, 1999. State Bureau of Quality and Technical Supervision of the People's Republic of China. Specifications for Chinese nautical charts:GB 12320-1998[S]. Beijing:Standards Press of China, 1999. [9] 武芳, 巩现勇, 杜佳威. 地图制图综合回顾与前望[J]. 测绘学报, 2017, 46(10):1645-1664.DOI:10.11947/j.AGCS.2017.20170287. WU Fang, GONG Xianyong, DU Jiawei. Overview of the research progress in automated map generalization[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1645-1664. DOI:10.11947/j.AGCS.2017.20170287. [10] 李成名, 郭沛沛, 殷勇,等. 一种顾及空间关系约束的线化简算法[J]. 测绘学报, 2017, 46(4):498-506.DOI:10.11947/j.AGCS.2017.20160546. LI Chengming, GUO Peipei, YIN Yong, et al. A line simplification algorithm considering spatial relations between two lines[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(4):498-506. DOI:10.11947/j.AGCS.2017.20160546. [11] 程绵绵, 孙群, 徐立, 等. 面轮廓线相似性和复杂性度量及在化简中的应用[J]. 测绘学报, 2019, 48(4):489-501.DOI:10.11947/j.AGCS.2019.20180124. CHENG Mianmian, SUN Qun, XU Li, et al. Polygon contour similarity and complexity measurement and application in simplification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(4):489-501. DOI:10.11947/j.AGCS.2019.20180124. [12] FALOUTSOS C, KAMEL I. Beyond uniformity and independence:analysis of R-trees using the concept of fractal dimension[C]//Proceedings of the 13th ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems-PODS'94. Minneapolis, Minnesota, USA:ACM Press, 1994:4-13. [13] WILLIAMS H. Chaos and fractals, new frontiers of science[J]. The Mathematical Gazette, 2006, 90(519):562. [14] MA Ding, JIANG Bin. A smooth curve as a fractal under the third definition[J]. Cartographica:the International Journal for Geographic Information and Geovisualization, 2018, 53(3):203-210. [15] 高义, 苏奋振, 周成虎, 等. 基于分形的中国大陆海岸线尺度效应研究[J]. 地理学报, 2011, 66(3):331-339. GAO Yi, SU Fenzhen, ZHOU Chenghu, et al. Scale effects of China mainland coastline based on fractal theory[J]. Acta Geographica Sinica, 2011, 66(3):331-339. [16] 刘孝贤, 赵青. 基于分形的中国沿海省区海岸线复杂程度分析[J]. 中国图象图形学报, 2004, 9(10):1249-1257. LIU Xiaoxian, ZHAO Qing. Analysis on the complication-degree for coast line of the Chinese provinces along the sea based on the fractal theory[J]. Journal of Image and Graphics, 2004, 9(10):1249-1257. [17] 肖天元, 刘鹏程, 艾廷华, 等. 一种傅里叶信息度量的曲线分形描述与多尺度表达方法[J]. 武汉大学学报(信息科学版), 2020, 45(1):119-125. XIAO Tianyuan, LIU Pengcheng, AI Tinghua, et al. A fractal description and multi-scale expression method of Fourier information metrics[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1):119-125. [18] 刘鹏程, 艾廷华, 毕旭. 傅立叶级数支持下的等高线多尺度表达模型[J]. 武汉大学学报(信息科学版), 2013, 38(2):221-224. LIU Pengcheng, AI Tinghua, BI Xu. Multi-scale representation model for contour based on Fourier series[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2):221-224. [19] 何爱玲, 王力加, 郭晶鑫, 等. 二维图形复杂度计算与叶片轮廓复杂性分析[J]. 数学计算, 2014,3(3):89-95. HE Ailing, WANG Lijia, GUO Jingxin, et al. Complexity computation of two-dimensional graphics and complexity analysis of leaf contour[J]. Mathematical Computation, 2014,3(3):89-95. [20] 刘慧敏, 邓敏, 徐震, 等. 线要素几何信息量度量方法[J]. 武汉大学学报(信息科学版), 2014, 39(4):500-504. LIU Huimin, DENG Min, XU Zhen, et al. Geometric information content measurement of individual line feature[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4):500-504. [21] 艾廷华, 郭仁忠, 陈晓东. Delaunay三角网支持下的多边形化简与合并[J]. 中国图象图形学报, 2001, 6(7):703-709. AI Tinghua, GUO Renzhong, CHEN Xiaodong. Simplification and aggregation of polygon object supported by delaunay triangulation structure[J]. Journal of Image and Graphics, 2001, 6(7):703-709. [22] 邵春丽, 胡鹏, 黄承义, 等. Delaunay三角网的算法详述及其应用发展前景[J]. 测绘科学, 2004, 29(6):68-71, 5. SHAO Chunli, HU Peng, HUANG Chengyi, et al. The expatiation of Delaunay algorithms and a promising direction in application[J]. Science of Surveying and Mapping, 2004, 29(6):68-71, 5. [23] 艾廷华, 郭仁忠. 支持地图综合的面状目标约束Delaunay三角网剖分[J]. 武汉测绘科技大学学报, 2000, 25(1):35-41. AI Tinghua, GUO Renzhong. A constrained delaunay partitioning of areal objects to support map generalization[J]. Journal of Wuhan Technical University of Surveying and Mapping (Wtusm), 2000, 25(1):35-41. [24] 艾廷华, 郭仁忠. 基于约束Delaunay结构的街道中轴线提取及网络模型建立[J]. 测绘学报, 2000, 29(4):348-354. AI Tinghua, GUO Renzhong. Extracting center-lines and building street network based on constrained delaunay triangulation[J]. Acta Geodaetica et Cartographica Sinica, 2000, 29(4):348-354. [25] 艾廷华, 郭仁忠, 刘耀林. 曲线弯曲深度层次结构的二叉树表达[J]. 测绘学报, 2001, 30(4):343-348. AI Tinghua, GUO Renzhong, LIU Yaolin. A binary tree representation of curve hierarchical structure in depth[J]. Acta Geodaetica et Cartographica Sinica, 2001, 30(4):343-348. [26] 朱求安, 张万昌, 余钧辉. 基于GIS的空间插值方法研究[J]. 江西师范大学学报(自然科学版), 2004, 28(2):183-188. ZHU Qiuan, ZHANG Wanchang, YU Junhui. The spatial interpolations in GIS[J]. Journal of Jiangxi Normal University (Natural Science Edition), 2004, 28(2):183-188. [27] 邓晓斌. 基于ArcGIS两种空间插值方法的比较[J]. 地理空间信息, 2008, 6(6):85-87. DENG Xiaobin. Comparison between two space interpolation methods based on ArcGIS[J]. Geospatial Information, 2008, 6(6):85-87. [28] SIBSON R. A vector identity for the Dirichlet tessellation[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1980, 87(1):151-155. [29] BELIKOV V V, IVANOV V D, KONTOROVICH V K, et al. The non-sibsonian interpolation:a new method of interpolation of the values of a function on an arbitrary set of points[J]. Computational Mathematics and Mathematical Physics, 1997,37(1):11-17. [30] 周小平, 周瑞忠. 基于Voronoi图的新型几何插值及其与传统代数插值方法的比较[J]. 岩石力学与工程学报, 2005, 24(1):133-138. ZHOU Xiaoping, ZHOU Ruizhong. New geometric interpolation method based on voronoi diagram and the comparison with traditionalalgebraic method[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(1):133-138. [31] 王兆清, 冯伟. 自然单元法研究进展[J]. 力学进展, 2004, 34(4):437-445. WANG Zhaoqing, FENG Wei. Advances in natural element method[J]. Advances in Mechanics, 2004, 34(4):437-445. [32] 刘立珍. 基于自然单元法的渗流分析[D]. 北京:清华大学, 2011. LIU Lizhen. Seepage analysis based on natural element method[D]. Beijing:Tsinghua University, 2011. |