测绘学报 ›› 2023, Vol. 52 ›› Issue (6): 1022-1036.doi: 10.11947/j.AGCS.2023.20220258

• 地图学与地理信息 • 上一篇    下一篇

兼顾要素正确分类及精准定位的栅格海图水深注记自动提取方法

马梦锴1,2, 董箭1, 唐露露1, 彭认灿1, 周寅飞1, 王芳3   

  1. 1. 海军大连舰艇学院军事海洋与测绘系, 辽宁 大连 116018;
    2. 海图信息中心, 天津 300450;
    3. 391001部队, 北京 100161
  • 收稿日期:2022-04-17 修回日期:2023-02-14 发布日期:2023-07-08
  • 通讯作者: 董箭 E-mail:navydj@163.com
  • 作者简介:马梦锴(1996-),男,硕士生,研究方向为人工智能与海图制图技术结合的研究与应用。E-mail:mamengkai1996@163.com
  • 基金资助:
    国家自然科学基金(42071439;4187369;41901320);海军大连舰艇学院科研发展基金(DJYKYKT2021-025)

Automatic extraction method of depth annotation in grid chart considering correct classification and accurate positioning of elements

MA Mengkai1,2, DONG Jian1, TANG Lulu1, PENG Rencan1, ZHOU Yinfei1, WANG Fang3   

  1. 1. Department of Military Oceanography and Surveying, Dalian Naval Academy, Dalian 116018, China;
    2. Chart Information Center, Tianjin 300450, China;
    3. Troops 391001, Beijing 100161, China
  • Received:2022-04-17 Revised:2023-02-14 Published:2023-07-08
  • Supported by:
    The National Natural Science Foundation of China (Nos. 42071439; 4187369; 41901320); Research and Development Fund of Dalian Naval Academy (No. DJYKYKT2021-025)

摘要: 针对当前水深注记自动提取实现困难、精度不高及效率过低等问题,将卷积神经网络(convolutional neural networks,CNN)模型应用于水深注记的自动识别,结合水深注记空间分布及几何特性对传统模式识别算法进行了改进,提出了一种兼顾要素正确分类及精准定位的栅格海图水深注记自动提取方法。通过对海图切片邻域的定量扩张,建立了顾及要素完整性的海图自适应切分模型,克服了CNN模型应用于大幅面海图要素识别的局限性;结合预测框角点位置的空间关系分析及评估,设计了面向空域冲突的要素唯一性判定原则,解决了邻域扩张引起的水深注记重复识别问题;在此基础上,进一步论证了水深注记主点位置的空间分布规律,建立了考虑要素几何分布特征的连通域分析改进模型,实现了水深注记的精准定位及数值提取。试验结果表明:①本文方法较好地实现了水深注记的自动提取,在CNN模型实现水深注记分类及粗定位过程中,具有较高的查全率和分类查准率。同时,最终水深注记数值提取结果正确率较高,且主点位置能满足水深注记提取的特殊要求。②通过多种CNN模型应用于本文自动提取模型中的对比试验,对比不同CNN模型在本文自动提取模型中的效能,分析并给出CNN模型采用的建议。同时,选取表现较好的CNN模型,作为本文模型采用的CNN模型与传统模式识别方法做对比,根据处理时间和查准、查全率结果,证明本文方法具有较高的识别准确率和效率。

关键词: 海图数字化, CNN, 深度学习, 水深注记, 自动提取

Abstract: Aiming at the problems of difficult implementation, low accuracy and low efficiency of automatic extraction of depth annotation, CNN model is applied to automatic recognition of depth annotations. Combined with the spatial distribution and geometric characteristics of depth annotation, the traditional pattern recognition algorithm is improved, a grid chart depth annotation automatic extraction method considering the correct classification and accurate positioning of elements is proposed. Through the quantitative expansion of the neighborhood of chart slices, an adaptive chart segmentation model considering the integrity of elements is established, which overcomes the limitations of CNN model applied to large format chart element recognition. Combined with the analysis and evaluation of the spatial relationship of the corner position of the prediction frame, the principle of determining the uniqueness of elements facing the airspace conflict is designed, and the problem of repeated recognition of depth annotation caused by neighborhood expansion is solved. On this basis, the spatial distribution law of the location of the main points of depth annotation is further demonstrated, and an improved connected domain analysis model considering the geometric distribution characteristics of elements is established, which realizes the accurate positioning and numerical extraction of depth annotation. The experimental results show that: ① This method can achieve the automatic extraction of depth annotation, and has high recall and precision in the process of classification and rough positioning of depth annotation based on CNN model. At the same time, the accuracy of the final depth annotation value extraction is high, and the position of the main point can meet the special requirements of depth annotation extraction; ② Through the comparative experiments of various CNN models applied in the automatic extraction model in this paper, the effectiveness of different CNN models in the automatic extraction model in this paper is compared, and the suggestions for the adoption of CNN models are analyzed and given. At the same time, the CNN model with good performance is selected as the CNN model used in this model and compared with the traditional pattern recognition method. According to the processing time and the accuracy recall results show that this method has high recognition accuracy and efficiency.

Key words: nautical chart, CNN, deep learning, sounding annotation, automatic extraction

中图分类号: