测绘学报 ›› 2023, Vol. 52 ›› Issue (11): 1994-2006.doi: 10.11947/j.AGCS.2023.20220528

• 地图学与地理信息 • 上一篇    下一篇

一种城市路网多层次复合网格模式识别方法

王安东, 武芳, 巩现勇, 翟仁健, 刘呈熠, 邱越, 张寒雪   

  1. 信息工程大学地理空间信息学院, 河南 郑州 450001
  • 收稿日期:2022-09-02 修回日期:2023-01-02 发布日期:2023-12-15
  • 通讯作者: 巩现勇 E-mail:gongxygis@whu.edu.cn
  • 作者简介:王安东(1995-),男,博士生,主要研究方向为模式识别与自动制图综合。E-mail:wangadgis@chd.edu.cn
  • 基金资助:
    国家自然科学基金(42371461);河南省杰出青年基金(212300410014)

A recognition approach for compound grid pattern of urban road networks

WANG Andong, WU Fang, GONG Xianyong, ZHAI Renjian, LIU Chengyi, QIU Yue, ZHANG Hanxue   

  1. Institute of Geospatial Information, Information Engineering University, Zhengzhou 450001, China
  • Received:2022-09-02 Revised:2023-01-02 Published:2023-12-15
  • Supported by:
    The National Natural Science Foundation of China (No. 42371461); The Natural Science Foundation for Distinguished Young Scholars of Henan Province (No. 212300410014)

摘要: 道路网作为城市骨架,其模式识别对于地图综合、空间数据挖掘与多尺度表达具有重要意义。针对大比例尺数据中局部异质性明显的道路网格模式识别问题,提出基于网眼的城市道路多层次复合网格模式识别方法。首先分析了道路网眼直线和网格模式的多层次认知特点,提出了“基础网眼→复合网眼→规则模式”的多层次认知顺序;然后考虑复合直线模式的组合性、延伸性和直线性约束,设计了道路网眼直线模式、包含关系和并列关系的识别方法;最后通过对直线模式的组合分解,提取道路网眼的网格模式。试验表明本文方法能有效识别路网数据中的复合网格模式,识别结果符合人类认知特点。

关键词: 制图综合, 道路网, 网眼, 模式识别, 多层次认知, 网格模式

Abstract: As the skeleton of urban cities, the spatial pattern recognition of road networks is of great significance for map generalization, spatial data mining, and multi-scale representation. This paper presents an approach to recognizing the compound grid pattern of road networks with local heterogeneity based on road meshes. Firstly, the multilevel cognitive characteristics of the linear and grid pattern of road meshes are analyzed, and the multilevel cognitive order, which from basic mesh, compound mesh to regular pattern, is proposed. Secondly, the recognition methods of inclusion relationship, parallel relationship, and linear pattern between road meshes are designed considering the composability, linearity, and extensibility of compound linear pattern. Finally, the linear patterns are combined and decomposed to extract the compound grid pattern of road meshes. Experiments show that the proposed method is effective for compound grid pattern recognition with the agreements of human spatial cognitive characteristics.

Key words: cartographic generalization, road network, road meshes, pattern recognition, multilevel cognition, grid pattern

中图分类号: