测绘学报 ›› 2024, Vol. 53 ›› Issue (4): 629-643.doi: 10.11947/j.AGCS.2024.20220523
收稿日期:
2022-09-01
修回日期:
2023-06-30
发布日期:
2024-05-13
作者简介:
罗亦泳(1982—),男,博士,教授,研究方向为GNSS电离层建模及其应用。E-mail:ecityyluo@163.com
基金资助:
Received:
2022-09-01
Revised:
2023-06-30
Published:
2024-05-13
About author:
LUO Yiyong (1982—), male, PhD, professor, majors in ionosphere modeling based on GNSS and its applications. E-mail: ecityyluo@163.com
Supported by:
摘要:
2022年1月15日南太平洋汤加海底火山发生剧烈喷发,是近30年来最大规模的火山爆发,产生的强烈大气波动为开展火山喷发电离层扰动研究提供了难得的机会。本文利用GPS数据探测火山附近、新西兰、澳大利亚和中国地区的电离层扰动,从波形、频率、传播速度和时空分布等角度分析汤加火山喷发电离层行扰(TIDs)的特征,并利用电离层测高站、海平面监测站和大气压监测站的观测数据进一步验证TIDs的传播特征。研究结果发现,汤加火山喷发在其附近区域、新西兰、澳大利亚和中国地区引起了3类TIDs。在火山附近东、西、南、北方向上均探测到第一类TIDs,TIDs的传播速度为617~972 m/s,该类TIDs极有可能由火山喷发产生的声波引起。汤加火山喷发仅在火山附近东、西方向引起第二类TIDs,其传播速度分别为472 m/s和418 m/s,可能由声波传播过程中衍生的声重力波或者混合波引起,形成机理有待进一步研究。汤加火山喷发在新西兰、澳大利亚和中国地区引发了第三类TIDs,其传播速度为328~352 m/s,该类TIDs与Lamb波密切相关。
中图分类号:
罗亦泳, 吴大卫. 基于GPS TEC的2022年1月15日汤加火山喷发激起的电离层行扰分析[J]. 测绘学报, 2024, 53(4): 629-643.
Yiyong LUO, Dawei WU. Analysis of ionospheric disturbance induced by Tonga volcanic eruption on January 15, 2022 based on GPS TEC[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 629-643.
[1] | THEMENS D R, WATSON C, ŽAGAR N, et al. Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption[J]. Geophysical Research Letters, 2022, 49(7):1-11. |
[2] | CHENG K, HUANG Y N. Ionospheric disturbances observed during the period of Mount Pinatubo eruptions in June 1991[J]. Journal of Geophysical Research: Space Physics, 1992, 97(A11):16995-17004. |
[3] | HEKI K. Explosion energy of the 2004 eruption of the Asama volcano, central Japan, inferred from ionospheric disturbances[J]. Geophysical Research Letters, 2006, 33(14):L14303. |
[4] | DAUTERMANN T, CALAIS E, LOGNONNÉ P, et al. Lithosphere-atmosphere-ionosphere coupling after the 2003 explosive eruption of the Soufriere Hills volcano, Montserrat[J]. Geophysical Journal International, 2009, 179(3):1537-1546. |
[5] | DAUTERMANN T, CALAIS E, MATTIOLI G S. Global positioning system detection and energy estimation of the ionospheric wave caused by the 13 July 2003 explosion of the Soufriere Hills volcano, Montserrat[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B2):257-262. |
[6] | NAKASHIMA Y, HEKI K, TAKEO A, et al. Atmospheric resonant oscillations by the 2014 eruption of the Kelud volcano, Indonesia, observed with the ionospheric total electron contents and seismic signals[J]. Earth and Planetary Science Letters, 2016, 434:112-116. |
[7] | SHULTS K, ASTAFYEVA E, ADOURIAN S. Ionospheric detection and localization of volcano eruptions on the example of the April 2015 Calbuco events[J]. Journal of Geophysical Research: Space Physics, 2016, 121(10):303-315. |
[8] | 胡羽丰, 李振洪, 王乐, 等. 2022 年汤加火山喷发的综合遥感快速解译分析[J]. 武汉大学学报(信息科学版), 2022, 47(2):242-251. |
HU Yufeng, LI Zhenhong, WANG Le, et al. Rapid interpretation and analysis of the 2022 eruption of Hunga Tonga-Hunga Ha'apai volcano with integrated remote sensing techniques[J].Geomatics and Information Science of Wuhan University, 2022, 47(2):242-251. | |
[9] | 程巍, 滕鹏晓, 吕君, 等. 汤加火山喷发所产生的次声波[J]. 声学学报, 2022, 47(2):289-291. |
CHENG Wei, TENG Pengxiao, LÜ Jun, et al. On the infrasonic waves generated from the volcano eruption in Tonga[J]. Acta Acustica, 2022, 47(2):289-291. | |
[10] | ZHANG Shunrong, VIERINEN J, ERCHA A A, et al. 2022 Tonga volcanic eruption induced global propagation of ionospheric disturbances via lamb waves[J]. Frontiers in Astronomy and Space Sciences, 2022, 9:871275. |
[11] | THEMENS D R, WATSON C, AGAR N, et al. Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption[J]. Geophysical Research Letters, 2022, 49(7):1-14. |
[12] | LIN J T, RAJESH P K, LIN C C, et al. Rapid conjugate appearance of the giant ionospheric Lamb wave in the Northern hemisphere after Hunga-Tonga volcano eruptions[J]. Geophysical Research Letters, 2022, 49(8). |
[13] | HONG J, KIL H, LEE W K, et al. Detection of different properties of ionospheric perturbations in the vicinity of the Korean Peninsula after the Hunga-Tonga volcanic eruption on 15 January 2022[J]. ESS Open Archive, 202249(14):124-128. |
[14] | WRIGHT C J, HINDLEY N P, ALEXANDER M J, et al. Surface-to-space atmospheric waves from Hunga Tonga-Hunga Ha'apai eruption[J]. Nature, 2022, 609:741-746. |
[15] | 唐龙, 郭博峰, 李哲. 利用日本GPS网探测2011年Tohoku海啸引发的电离层扰动[J]. 地球物理学报, 2017, 60(2):507-513. |
TANG Long, GUO Bofeng, LI Zhe. Detection of ionospheric disturbances driven by the 2011 Tohoku tsunami using GPS network in Japan[J]. Chinese Journal of Geophysics, 2017, 60(2):507-513. | |
[16] | 汤俊, 高鑫, 李垠健, 等. 2018年8月磁暴期间北斗GEO卫星电离层TEC时空变化分析[J]. 测绘学报, 2022, 51(3):317-326.DOI: 10.11947/j.AGCS.2022.20210013. |
TANG Jun, GAO Xin, LI Yinjian, et al. Spatial-temporal variations of the ionospheric TEC during the August 2018 geomagnetic storm by BeiDou GEO satellites[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3):317-326. DOI: 10.11947/j.AGCS.2022.20210013. | |
[17] | 程娜. 基于多源数据的电离层异常监测及GNSS影响效应研究[J]. 测绘学报, 2021, 50(9):1277.DOI: 10.11947/j.AGCS.2021.20200382. |
CHENG Na. Study on ionosphere anomaly monitoring based on multi-source data and its effect on GNSS[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9):1277. DOI: 10.11947/j.AGCS.2021.20200382. | |
[18] | 姚宜斌, 翟长治, 孔建, 等. 2015年尼泊尔地震的震前电离层异常探测[J]. 测绘学报, 2016, 45(4):385-395.DOI: 10.11947/j.AGCS.2016.20150384. |
YAO Yibin, ZHAI Changzhi, KONG Jian, et al. The pre-earthquake ionosphere anomaly of the 2015 Nepal earthquake[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(4):385-395. DOI: 10.11947/j.AGCS.2016.20150384. | |
[19] | PEREVALOVA N P, SHESTAKOV N V, VOEYKOV S V, et al. Ionospheric disturbances in the vicinity of the Chelyabinsk meteoroid explosive disruption as inferred from dense GPS observations[J]. Geophysical Research Letters, 2015, 42(16):6535-6543. |
[20] | HUANG C Y, HELMBOLDT J F, PARK J, et al. Ionospheric detection of explosive events[J]. Reviews of Geophysics, 2019, 57(1):78-105. |
[21] | HINES C O. Internal atmospheric gravity waves at ionospheric heights[J]. Canadian Journal of Physics, 1960, 38(11):1441-1481. |
[22] | HOOKE W H. Ionospheric response to internal gravity waves: 2. lower F region response[J]. Journal of Geophysical Research, 1970, 75(34):7229-7238. |
[23] | ASTAFYEVA E. Ionospheric detection of natural hazards[J]. Reviews of Geophysics, 2019, 57(4):1265-1288. |
[24] | COÏSSON P, OCCHIPINTI G, LOGNONNÉ P, et al. Tsunami signature in the ionosphere: a simulation of OTH radar observations[J]. Radio Science, 2011, 46(6):1-10. |
[25] | ROLLAND L M, LOGNONN'E P, ASTAFYEVA E, et al. The resonant response of the ionosphere imaged after the 2011 off the Pacific coast of Tohoku earthquake[J]. Earth, Planets and Space, 2011, 63(7):853-857. |
[26] | RAM S T, SUNIL P S, KUMAR M R, et al. Coseismic traveling ionospheric disturbances during the Mw 7.8 Gorkha, Nepal earthquake on 25 April 2015 from ground and spaceborne observations[J]. Journal of Geophysical Research: Space Physics, 2017, 122(10):10669-10685. |
[27] | LIU C H, KLOSTERMEYER J, YEH K C, et al. Global dynamic responses of the atmosphere to the eruption of Mount St. Helens on May 18, 1980[J]. Journal of Geophysical Research: Space Physics, 1982, 87(A8):6281-6290. |
[28] | 包云轩.气象学 [M]. 北京: 中国农业出版社, 2002: 93-94. |
BAO Yunxuan. Meteorology[M]. Beijing: China Agriculture Press, 2002: 93-94. | |
[29] | JIN Shuanggen, JIN Rui, LI J H. Pattern and evolution of seismo-ionospheric disturbances following the 2011 Tohoku earthquakes from GPS observations[J]. Journal of Geophysical Research(Space Physics), 2014, 119(9):7914-7927. |
[30] | DING Feng, MAO Tian, HU Lianhuan, et al. GPS network observation of traveling ionospheric disturbances following the Chelyabinsk meteorite blast[J]. Annales Geophysicae, 2016, 34(11):1045-1051. |
[31] | ASTAFYEVA E, HEKI K, KIRYUSHKIN V, et al. Two-mode long-distance propagation of coseismic ionosphere disturbances[J]. Journal of Geophysical Research(Space Physics), 2009, 114(A10):A10307. |
[1] | 李倩倩, 鲍李峰, 王勇. 2022汤加海底火山活动的测高海面观测异常分析[J]. 测绘学报, 2024, 53(2): 263-273. |
[2] | 王泽明, 李浩军, 孙亚峰. GNSS-R潮位监测抗差估计[J]. 测绘学报, 2023, 52(2): 195-205. |
[3] | 张宝成, 柯成, 查九平, 侯鹏宇, 刘腾, 袁运斌, 李子申. 非差非组合PPP-RTK:模型算法、终端样机与实测结果[J]. 测绘学报, 2022, 51(8): 1725-1735. |
[4] | 谭述森, 张天桥. 当代GNSS的发展进步与转型构想[J]. 测绘学报, 2022, 51(7): 1114-1118. |
[5] | 何秀凤, 高壮, 肖儒雅, 罗海滨, 贾东振, 章浙涛. InSAR与北斗/GNSS综合方法监测地表形变研究现状与展望[J]. 测绘学报, 2022, 51(7): 1338-1355. |
[6] | 蔡洪亮, 孟轶男, 耿长江, 高为广, 张天桥, 李罡, 邵搏, 辛洁, 卢红洋, 毛悦, 袁海波, 刘成, 胡小工, 楼益栋. 北斗三号全球导航卫星系统服务性能评估:定位导航授时、星基增强、精密单点定位、短报文通信与国际搜救[J]. 测绘学报, 2021, 50(4): 427-435. |
[7] | 袁运斌, 李敏, 霍星亮, 李子申, 王宁波. 北斗三号全球导航卫星系统全球广播电离层延迟修正模型(BDGIM)应用性能评估[J]. 测绘学报, 2021, 50(4): 436-447. |
[8] | 邓远帆, 郭斐, 张小红, 刘万科. 北斗三号卫星多频多通道差分码偏差估计与分析[J]. 测绘学报, 2021, 50(4): 448-456. |
[9] | 毛飞宇, 龚晓鹏, 辜声峰, 王琛琛, 楼益栋. 北斗三号卫星导航信号接收机端伪距偏差建模与验证[J]. 测绘学报, 2021, 50(4): 457-465. |
[10] | 赵东升, 李旺, 李宸栋, 唐旭, 张克非. 1 Hz GNSS电离层相位闪烁因子提取及在北极区域的验证[J]. 测绘学报, 2021, 50(3): 368-383. |
[11] | 糜晓龙, 袁运斌, 张宝成. 多频多模GNSS接收机差分相位偏差的短期时变特性[J]. 测绘学报, 2021, 50(10): 1290-1297. |
[12] | 黎奇, 白征东, 陈波波, 过静珺, 辛浩浩, 程宇航, 黎琼, 吴斐. GNSS/INS多传感器组合高速铁路轨道测量系统[J]. 测绘学报, 2020, 49(5): 569-579. |
[13] | 张小红, 马福建. 低轨导航增强GNSS发展综述[J]. 测绘学报, 2019, 48(9): 1073-1087. |
[14] | 张绍成, 王鑫哲, 黄龙强, 殷飞. 电离层二阶项延迟对GPS动态精密单点定位的影响[J]. 测绘学报, 2018, 47(S0): 45-53. |
[15] | 张双成, 南阳, 李振宇, 张勤, 戴凯阳, 赵迎辉. GNSS-MR技术用于潮位变化监测分析[J]. 测绘学报, 2016, 45(9): 1042-1049. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||