随着在轨遥感卫星数量的增加及高光谱成像技术的进步,能够获取到的高光谱数据量急剧增长,人类步入了大数据应用和数据驱动的科学发现时代。然而,如此大体量、大幅宽的高光谱数据导致了深度学习算法难以在单节点上学习和推理,为实时高效的信息智能解译带来了极大的挑战。因此,需要综合多星资源分布式协同解析,以解决分块处理带来的块效应。然而,协同处理必然伴随着信息的交互与传输,为进一步降低传输信息量,需要对梯度进行压缩,以缓解分布式学习中的通信瓶颈。本文综合探讨了多种主流的高效通信梯度压缩算法,特别关注其在通信受限的在轨环境下的优劣,并展望了梯度压缩的发展趋势。通过广泛的试验对比,本文全面评估了多种梯度压缩方法在高光谱图像处理中的表现,试验证明不同方法的适用性和性能差异,为未来在实际应用中选择最合适的梯度压缩方法提供了有力的参考。