测绘学报 ›› 2024, Vol. 53 ›› Issue (4): 689-699.doi: 10.11947/j.AGCS.2024.20220658

• 摄影测量学与遥感 • 上一篇    下一篇

基于模型定义的光学遥感卫星星上处理系统设计

刘薇1,2(), 刘松林1,2, 郭子博3, 刘凯3, 张荔哲4   

  1. 1.智慧地球重点实验室,北京 100029
    2.西安测绘研究所,陕西 西安 710054
    3.西安电子科技大学,陕西 西安 710071
    4.中国空间技术研究院西安分院,陕西 西安 710000
  • 收稿日期:2022-11-20 修回日期:2024-01-01 发布日期:2024-05-13
  • 作者简介:刘薇(1981—),女,副研究员,研究方向为航空航天摄影测量与遥感。E-mail:1271772072@qq.com
  • 基金资助:
    国家自然科学基金(62101395)

Design of optical remote sensing satellite onboard processing system based on model definition

Wei LIU1,2(), Songlin LIU1,2, Zibo GUO3, Kai LIU3, Lizhe ZHANG4   

  1. 1.Key Laboratory of Smart Earth, Beijing 100029, China
    2.Xi'an Institue of Surveying and Mapping, Xi'an 710054, China
    3.Xidian University, Xi'an 710071, China
    4.China Academy of Space Technology (Xi’an), Xi'an 710000, China
  • Received:2022-11-20 Revised:2024-01-01 Published:2024-05-13
  • About author:LIU Wei (1981—), female, associate researcher, majors in aerospace photogrammetry and remote sensing. E-mail: 1271772072@qq.com
  • Supported by:
    The National Natural Science Foundation of China(62101395)

摘要:

本文提出了一种基于模型定义的光学遥感卫星星上处理系统设计方法,构建了“硬件资源-算子模块-通用处理核-典型应用”的星上处理任务行为模型范式。在硬件层面,采用星上异构嵌入式计算平台,将多处理器一体化设计,通过标准化高速数据互连,完成高速信号传输和数据处理;通过网络拓扑实现良好的扩展性,支持设备规模及数据处理复杂性的变化;在软件层面,针对星上智能处理任务中频繁数据读写操作、大量重复计算操作、卷积神经网络的通用计算与加速等需求,设计了星上平台指令集、星上算法通用算子和星上智能网络组件组成的可配置算子模块,并基于该模块可快速实现特定算法的硬件IP核。经仿真试验验证,本文方法可根据卫星平台和星上处理任务需求,按需适配最佳软硬件解决方案,并有效提高了计算资源利用率;提出的结合云检测的实时流水压缩编码方案,显著提升了压缩性能;设计的轻量化目标检测识别方法,计算资源效率达到91.5%;以高分一号、高分七号原始数据率为例进行分析,相比常规方案整体计算资源利用率分别提高了16.51%、17.77%。实现了星上处理系统研制过程模型化、工作模式可定义、逻辑资源共享化,是适应卫星小型化、快速部署的一种合理优化选择。

关键词: 遥感卫星, 星上处理, 模型定义, 按需适配, 异构计算

Abstract:

In this paper, a design method of optical remote sensing satellite on-board processing system based on model definition and model-based systems engineering (MBSE) is proposed, and a model paradigm of on-board processing task behavior of “hardware resource-operator module-general processing core-typical application” is constructed. At the hardware level, the on-board heterogeneous embedded computing platform is adopted to integrate the design of multiple processors, and complete high-speed signal transmission and data processing through standardized high-speed data interconnection. In order to support changes in device scale and data processing complexity, good scalability through network topology should be achieved. At the software level, in view of the requirements of frequent data read and write operations, a large number of repeated computing operations, and general computing and acceleration of convolutional neural networks in on-board intelligent processing tasks, a configurable operator module composed of the instruction set of the on-board platform, the general operator of the on-board algorithm and the components of the on-board intelligent network is designed, and the hardware IP core of the specific algorithm can be quickly implemented based on the module. Simulation experiments show that this method can adapt the best software and hardware solutions according to the needs of satellite platforms and on-board processing tasks, and effectively improve the utilization rate of computing resources. The proposed real-time streaming compression coding scheme combined with cloud detection significantly improves the compression performance. The designed lightweight target detection and recognition method achieves a computing resource efficiency of 91.5%. Taking the raw data rates of GF-1 and GF-7 as examples, the overall computing resource utilization rate increased by 16.51% and 17.77% respectively compared with the conventional solution. The method has realized the modeling of the development process, the definable working mode, and the sharing of logical resources of on-board processing system, which is a reasonable optimization choice to adapt to the miniaturization and rapid deployment of satellites.

Key words: remote sensing satellite, on-board processing, model-defined, on demand adaptation, heterogeneous computing

中图分类号: