测绘学报 ›› 2024, Vol. 53 ›› Issue (4): 677-688.doi: 10.11947/j.AGCS.2024.20230125

• 摄影测量学与遥感 • 上一篇    下一篇

知识图谱约束深度网络的高分辨率遥感影像场景分类

李彦胜(), 吴敏郎, 张永军   

  1. 武汉大学遥感信息工程学院,湖北 武汉 430079
  • 收稿日期:2023-04-23 修回日期:2024-01-15 发布日期:2024-05-13
  • 作者简介:李彦胜(1987—),男,博士,教授,研究方向为遥感时空知识图谱、多模态遥感基础大模型、遥感大数据智能解译。E-mail:yansheng.li@whu.edu.cn
  • 基金资助:
    国家自然科学基金(42030102)

Knowledge graph-guided deep network for high-resolution remote sensing image scene classification

Yansheng LI(), Minlang WU, Yongjun ZHANG   

  1. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
  • Received:2023-04-23 Revised:2024-01-15 Published:2024-05-13
  • About author:LI Yansheng (1987—), male, PhD, professor, majors in remote sensing spatio-temporal knowledge graph, multi-modal remote sensing foundation model, and intelligent interpretation of remote sensing big data. E-mail: yansheng.li@whu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(42030102)

摘要:

得益于深度网络理论与方法的快速发展,深度网络逐渐成为遥感影像场景分类任务的主流技术。然而,现有基于深度网络的遥感影像场景分类方法高度依赖大量人工标记的训练样本,且无法有效融合利用遥感领域丰富的先验知识。为了提升领域知识利用率同时降低标记样本依赖,本文提出了一种知识图谱引导深度网络学习的高分辨率遥感影像场景分类方法。首先,构建了一个包括领域内多种来源知识的土地覆盖概念知识图谱来更灵活便捷地应用领域先验知识。然后,通过知识图谱表示学习方法将土地覆盖概念知识图谱中的遥感场景语义类别表达为语义向量,形成遥感场景类别语义基准。在知识引导学习阶段,通过施加场景类别语义向量与深度网络浅层视觉特征向量的跨模态对齐约束引导深度网络的浅层部分更有效地学习不同类别遥感影像场景的共享特征,在深度网络深层部分则仍然通过场景类别标签引导学习不同遥感场景的判别特征。在测试阶段,完成优化的深度网络模型可以在不依赖任何先验知识的情况下完成高精度遥感影像场景分类。在目前公开的最大的遥感影像场景分类数据集上的试验结果表明,本文提出的知识引导学习方法相比现有方法在10%、30%、50%等不同训练样本比率下均可以获得最佳分类性能。在10%这一比率条件下,本文提出的知识引导学习方法相比基线深度网络在总体精度指标(OA)上能够得到5.11%的提升。

关键词: 遥感影像场景分类, 土地覆盖概念知识图谱, 知识图谱表示学习, 知识图谱约束深度网络

Abstract:

Thanks to the rapid development of deep network theory and methods, deep networks have gradually become the mainstream technology for remote sensing image scene classification tasks. However, existing deep network-based remote sensing image scene classification methods are highly dependent on a large number of manually labeled training samples and cannot effectively integrate and utilize the rich prior knowledge in the remote sensing field. In order to improve the utilization of domain knowledge while reducing the dependence on labeled samples, this paper proposes a knowledge graph-guided deep network learning method for high-resolution remote sensing image scene classification. First, this paper constructs a land cover concept knowledge graph that includes various sources of knowledge in the field to more flexibly and conveniently apply domain prior knowledge. Furthermore, through the knowledge graph representation learning method, the semantic categories of remote sensing scenes in the land cover concept knowledge graph are expressed as semantic vectors to form a semantic benchmark for remote sensing scene categories. In the knowledge-guided learning stage, the cross-modal alignment constraint between the scene category semantic vector and the shallow visual feature vector of the deep network is applied to guide the shallow part of the deep network to more effectively learn shared features of different categories of remote sensing image scenes, while in the deep part of the deep network, it is still guided by scene category labels to learn discriminative features of different remote sensing scenes. In the testing stage, the optimized deep network model can complete high-precision remote sensing image scene classification without relying on any prior knowledge. The experimental results on the currently largest publicly available remote sensing image scene classification dataset show that the proposed knowledge-guided learning method can obtain optimal classification performance at different training sample ratios such as 10%, 30%, and 50% compared with existing methods. Under the condition of 10% sample ratio, our proposed method can achieve an improvement of 5.11% in overall accuracy (OA) compared with baseline deep networks.

Key words: remote sensing image scene classification, land cover concept knowledge graph, knowledge graph representation learning, knowledge graph-guided deep network

中图分类号: